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Executive Summary

Growing amounts of intermittent renewable generation capacity substantially
increase the complexity of determining whether sufficient energy will be avail-
able to meet hourly demands throughout the year. As the events of August 2020
in California and February 2021 in Texas demonstrate, supply shortfalls can
have large economic and public health consequences. An empirical analysis
of these two events demonstrates that similar supply shortfalls are likely to oc-
cur in the future without a paradigm shift in how long-term resource adequacy
is determined for an electricity supply industry with significant intermittent
renewables. An alternative approach to determining long-term resource ade-
quacy that explicitly recognizes the characteristics of different generation tech-
nologies is outlined and its properties explored relative to current approaches.
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I. Introduction

Restructured electricity supply industries have one glaring weakness that
is becoming increasingly apparent as the share of intermittent renew-
ables in a region increases and more consumers shift to using electricity
for space heating and personal transportation. There is no single entity
responsible for ensuring that the supply of electricity equals demand un-
der all possible current and future demand conditions. Generation unit
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owners can only supply electricity up to the available capacity of their
generation units. Transmission network operators can only dispatch the
set of available generation units or curtailable demands in the geographic
region under their control. Electricity retailers can only withdraw the amount
of energy produced by generation unit owners less any transmission net-
work losses.

Under the vertically integrated monopoly regime, the geographic mo-
nopoly electricity supplier was the single entity responsible for ensuring
supply equals demand under all possible current and future system con-
ditions. Consequently, politicians and regulators knew precisely what
entity to penalize if supply shortfalls occurred. In the restructured re-
gime, generation unit owners, retailers, and the system operator can
all shift blame to some other entity for a supply shortfall.

Fortunately, in a restructured electricity supply industry composed of
dispatchable thermal generation units and predictable peak demands,
ensuring that supply will equal demand throughout the year is relatively
straightforward. The system operator first multiplies the installed capac-
ity of each generation unit by its availability factor, the fraction of hours of
the year the unit is expected to be available to operate. If the sum of the
availability-factor-adjusted capacities across all generation units is greater
than the annual demand peak by a 10%—-15% margin, the system operator
can be confident that there will be sufficient supply to meet demand
throughout the year.

This process becomes more complicated if a substantial fraction of
energy comes from hydroelectric resources because water availability
determines how much energy these resources can produce at any time
during the year. There are substantial unpredictable differences across
seasons and years in the amount of water that is available to produce
electricity, and many examples from hydro-dominated markets around
the world where unexpectedly low water conditions have led to periods
with supply shortfalls and/or extremely high prices in the short-term
market.' The first evidence that the traditional capacity-based approach
to long-term resource adequacy is inappropriate for regions with signif-
icant intermittent renewable resources is that these outcomes occurred
because insufficient energy was available to be produced by the hydro-
electric units, and not because there was insufficient hydroelectric gen-
eration capacity in the region.

As the share of intermittent renewable energy from wind and solar
generation units in a region increases, it becomes even more difficult
to ensure that supply equals demand during all hours of the year. Wind
and solar resources can stop producing energy with little advance
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notice, produce very little energy during extreme hot and cold weather
conditions, and have long durations of low energy output. These facts
make it virtually impossible to determine the amount of energy wind
and solar resources can reliably supply during any specific time interval
during the year.

Many regions of the United States are transitioning to electricity and
away from fossil fuels for space heating and personal transportation ser-
vices. Charging of electric vehicles significantly increases both the level
and variability of electricity demand. Electric space heating significantly
increases the sensitivity of electricity demand to cold weather condi-
tions. A significant share of space heating with electricity can change a
region from one where the annual demand peak occurs during the sum-
mer to one where it occurs during the winter.

These facts imply the need for revisions to the existing approach to
long-term resource adequacy (RA)—the process of ensuring that supply
will equal demand during all hours of the year—in regions with signif-
icant amounts of wind and solar resources and goals to transition to
electricity for space heating and personal transportation. The purpose
of this paper is to propose a long-term RA mechanism that is more likely
to achieve a reliable supply of electricity in this environment.

The first step in this process is a statement of why, unlike other prod-
uct markets, all existing wholesale electricity markets require a long-
term RA mechanism. This is because of what Wolak (2013) calls the re-
liability externality, caused by a regulator-mandated upper bound on the
offer price a supplier can submit to the short-term market in all existing
wholesale markets in the United States. This cap on offer prices creates
an incentive for electricity retailers and consumers to underprocure
their expected real-time demands in the forward energy market, which
can result in energy shortfalls during high-demand conditions and ex-
pose customers to extremely high prices for sustained periods of time.

Empirical evidence from California during August 2020 is used to il-
lustrate the increasing risk of relying on a capacity-based approach to
address the reliability externality in a wholesale electricity market with
a substantial share of intermittent renewables and policy goals to tran-
sition to electricity for space heating and personal transportation. The
experience of Texas during February 2021 is used to illustrate the risk
of not having a formal long-term RA mechanism in place in a wholesale
electricity market with a significant share of intermittent renewables,
even if there is an extremely high offer cap on the short-term market.
The amount of energy supplied by renewable resources during high-
demand periods in these two markets can be unexpectedly low, and
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for both markets this was a major factor determining the need to curtail
demand during these two time periods.

The experience of California, Texas, and several international markets
demonstrates that having adequate energy available to serve demand,
not adequate generation capacity, is the fundamental long-term RA chal-
lenge in renewables-dominated regions. I propose a standardized fixed-
price forward contract (SFPFC) approach to long-term RA to address this
challenge. This approach assigns the risk of meeting system demand through-
out the year to generation unit owners. It encourages cross-hedging of
energy-supply risk between dispatchable generation units and intermit-
tent renewable resource owners. It also fosters the active participation of
final consumers and storage resources in managing the real-time supply
and demand balance.

The SFPFC mechanism shares a key feature with the existing long-
term RA mechanisms that exist in Chile and Peru, two regions with sig-
nificant hydroelectric resources as well as growing shares of intermit-
tent wind and solar resources, particularly in Chile. As outlined in Wolak
(2021), both these regions assign the risk of meeting system demand
throughout the year to generation unit owners by operating a supplier-
only short-term market where electricity retailers and large consumers
must purchase full-requirements contracts from participants in the short-
term market to meet their hourly energy demands throughout the year.
These regions have successfully served system demands with average an-
nual growth rates in Chile of more than 7% since 1992 and more than 5%
since 1990 in Peru. This outcome emphasizes the necessity of high-powered
financial incentives for suppliers to ensure that system demand is met ev-
ery hour of the year in regions with significant intermittent renewables.
The goal of the SFPFC mechanism is to subject suppliers to this high-
powered financial incentive while still maximizing the opportunities for
active participation of final consumers in the short-term market.

The remainder of the paper proceeds as follows. The next section de-
fines the reliability externality and argues that it exists in all markets with
finite offer caps on the short-term market. Section III describes the conven-
tional solution to the reliability externality—a capacity-based long-term RA
mechanism. This section explains why such an approach to long-term RA
is likely to work as intended in a system with dispatchable thermal gener-
ation units, and why it is has led to supply shortfall periods in regions with
significant renewable energy shares. Section IV uses California and Texas
market outcomes during each region’s supply shortfall period to illustrate,
for the case of California, the inappropriateness of a capacity-based long-
term RA mechanism in renewables-dominated markets and, for the case
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of Texas, the need for a long-term RA mechanism even in a short-term
market with an extremely high offer cap. Section V presents the SFPFC
mechanism and explains why it is more likely to achieve long-term RA
in a renewables-dominated market with electrification goals for space
heating and transportation. This section uses the performance of the existing
long-term RA mechanisms in Chile and Peru as empirical evidence in favor
of the SFPFC mechanism. Section VI concludes and suggests directions for
future research.

II. The Reliability Externality in Wholesale Electricity Markets

Why do wholesale electricity markets require a regulatory mandate to
ensure long-term RA? Electricity is essential to modern life, but so are
many other goods and services. Consumers want cars, but there is no
regulatory mandate that ensures enough automobile assembly plants
to produce these cars. They want point-to-point air travel, but there is
no regulatory mandate to ensure enough airplanes to accomplish this.
Many goods are produced using high fixed cost, low marginal cost tech-
nologies similar to electricity supply. Nevertheless, these firms recover
their production costs, including a return on the capital invested, by sell-
ing their output at a market-determined price.

So, what is different about electricity that requires a long-term RA mech-
anism? The regulatory history of the electricity supply industry and the
legacy technology for metering electricity consumption results in what
Wolak (2013) calls a reliability externality.

Unlike the case of wholesale electricity, the markets for automobiles
and air travel do not have a regulatory limit on the level of the short-
term price. Airlines adjust the prices for seats on a flight over time in
an attempt to ensure that the number of customers traveling on that
flight equals the number of seats flying. This ability to use price to allo-
cate the available seats is also what allows the airline to recover its total
production costs and can result in as many different prices paid for the
same flight as there are customers on the flight.

Using the short-term price to manage the real-time supply and de-
mand balance in a wholesale electricity market is limited by a finite up-
per bound on a supplier’s offer price and/or a price cap set by the reg-
ulator that limits the maximum market-clearing price. Although offer
caps and price caps can limit the ability of suppliers to exercise unilateral
market power in the short-term energy market, they also reduce the
revenues suppliers can receive during scarcity conditions. This is often
referred to as the missing money problem for generation unit owners.
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However, this missing money problem is only a symptom of the existence
of the reliability externality.

This externality exists because offer caps limit the cost to electricity re-
tailers of failing to hedge their expected purchases from the short-term
market. Specifically, if the retailer or large consumer knows the price cap
on the short-term market is $250 per megawatt-hour (MWh), then it is
unlikely to be willing to pay more than that for electricity in any earlier
forward market. This creates the possibility that real-time system condi-
tions can occur where the amount of electricity demanded at or below
the offer cap is less than the amount suppliers are willing to offer at or
below the offer cap.

This outcome implies that the system operator must be forced to either
abandon the market mechanism or curtail firm load until the available sup-
ply offered at or below the offer cap equals the reduced level of demand, as
occurred several times in California between January 2001 and April 2001,
and most recently on August 14-15, 2020. A similar, but far more extreme,
set of circumstances arose during February 14-18, 2021, in Texas, and this
required significant demand curtailments during February 15-18.

Because random curtailments of supply to different distribution grids
served by the transmission network—also known as rolling blackouts—
are used to make demand equal to the available supply at or below the of-
fer cap under these system conditions, this mechanism creates a reliability
externality because no retailer bears the full cost of failing to procure ade-
quate energy to meet their demand in advance of delivery. A retailer that
has purchased sufficient supply in the forward market to meet its actual
demand is equally likely to be randomly curtailed as another retailer of
the same size that has not procured adequate energy in the forward mar-
ket. For this reason, all retailers have an incentive to underprocure their
expected energy needs in the forward market. When short-term prices rise
because of the supply shortfalls, retailers that do not hedge their wholesale
energy purchases will go bankrupt. If they attempt to pass these short-
term prices on to their retail customers, many are likely to be unable to
pay their electricity bills. As we discuss in Subsection IV.B, both outcomes
occurred in Texas following the events of February 14-18, 2021.

The lower the offer cap, the greater the likelihood that the retailer will
delay their electricity purchases to the short-term market. Delaying more
purchases to the short-term market increases the likelihood of insufficient
supply in the short-term market at or below the offer cap. Because retailers
do not bear the full cost of failing to procure sufficient energy in the forward
market, there is a missing market for long-term contracts for energy with
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long enough delivery horizons into the future to allow new generation
units to be financed and constructed to serve demand under all future
conditions in the short-term market. Therefore, a regulator-mandated
long-term RA mechanism is necessary to replace this missing market.

Regulatory intervention is necessary to internalize the resulting reli-
ability externality unless the regulator is willing to eliminate the offer
cap and commit to allowing the short-term price to clear the real-time
market under all possible system conditions. There are no short-term
wholesale electricity markets in the world that make such a commit-
ment. All of them have either explicit or implicit caps on the offer prices
suppliers can submit to the short-term market. The Electricity Reliability
Council of Texas (ERCOT) has a $9,000/ MWh offer cap, which is the
highest in the United States. The National Electricity Market (NEM) in
Australia has a A$15,000/ MWh offer cap, which is currently the highest
in world.

As the experience of February 14-18, 2021, in Texas demonstrated, an
extremely high offer cap on the short-term market does not eliminate the
reliability externality. It just shrinks the set of system conditions when
random curtailments are required to balance real-time supply and de-
mand. For the same reason, there have also been a small number of in-
stances when the NEM of Australia has experienced supply shortfalls
despite having an extremely high offer cap.

If customers do not have the ability to shift their demand away from
these high-priced periods because a significant fraction of their demand
for electricity is caused by space heating needs in response to the freez-
ing outside temperatures, charging customers an extremely high whole-
sale price for their consumption is largely punitive. This was the case for
many retail electricity customers in Texas during February 2021. They
were committed to buy a substantial fraction of their wholesale electric-
ity at the short-term price at a time when their demand for electricity for
space heating is extremely price inelastic. This experience underscores
the importance of a long-term RA mechanism in regions with significant
intermittent renewables, growing electrification of space heating, and
increasing adoption of electric vehicles.

III. Conventional Solution to Reliability Externality
with Intermittent Renewables

Currently, the most popular approach to addressing the reliability exter-
nality is a capacity procurement mechanism that assigns a firm capacity
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value to each generation unit based on the amount of energy it can provide
under stressed system conditions. Retailers are then required to demon-
strate that they have purchased sufficient firm capacity to meet their
monthly or annual demand peaks. Having sufficient firm capacity typi-
cally means that the retailer has purchased firm capacity equal to between
1.10 and 1.20 times its annual demand peak. The exact multiple of peak
demand chosen by a region depends on the mix of generation resources
and the reliability requirements of the system operator.

Under the current long-term RA mechanism in California, firm-level
capacity procurement obligations are assigned to retailers by the Cali-
fornia Public Utilities Commission (CPUC) to ensure that monthly and
annual system demand peaks can be met. Electricity retailers are free
to negotiate bilateral capacity contracts with individual generation unit
owners to purchase firm capacity to meet these obligations. The eastern
United States wholesale electricity markets in the PJM Interconnection,
Independent System Operator (ISO) New England, New York ISO, and
Midcontinent ISO each have a centralized market for firm capacity. These
involve periodic capacity auctions run by the wholesale market operator
where all retailers purchase their capacity requirements at a market-
clearing price. ERCOT does not currently have a formal long-term RA
mechanism besides its $9,000/ MWh offer cap and an ancillary services
scarcity pricing mechanism.

All capacity-based approaches to long-term RA rely on the credibility
of the firm capacity measures assigned to generation units. This is a rel-
atively straightforward process for dispatchable thermal units. As noted
earlier, the nameplate capacity of the generation unit times its annual
availability factor—the fraction of hours of the year a unit is expected
to be available to produce electricity—is the typical starting point for es-
timating the amount of energy the unit can provide under stressed sys-
tem conditions. As discussed below, if all retailers have met their firm
capacity requirements in a sizable market with only dispatchable ther-
mal generation, there is a very high probability that the demand for en-
ergy will be met during peak demand periods.

A simple model helps to illustrate the logic behind this claim. Suppose
that the peak demand for the market is 1,000 MW and the market is
composed of equal size generation units, each with a 90% annual avail-
ability factor, meaning that it is available to produce electricity any hour
of the year with a .90 probability. Suppose that the event that one gen-
eration unit fails to operate is independent of the event that any other
generation unit fails to operate. This independence assumption is
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reasonable for dispatchable thermal generation units because unavail-
ability is typically due to an event specific to that generation unit. If each
generation unit has a nameplate capacity of 100 MW, each has a firm ca-
pacity of 90 MW. If there are 13 generation units, then with probability
.96 demand peak will be covered.’ In this case, a firm capacity require-
ment of 1.17 times the demand peak would ensure that system demand
is met with .96 probability. Assuming that each generation unit is one-
tenth of the system demand peak is unrealistic for most electricity sup-
ply industries, but it does illustrate the important point that smaller
markets require firm capacity equal to a larger multiple of peak demand
to achieve a given level of reliability.

Suppose that each generation unit is now 50 MW and each still has the
same availability factor, so the firm capacity of each unit is now 45 MW.
In this case, the same firm capacity requirement of 1.17 times the demand
peak, or 26 generation units, would ensure system demand is met with
988 probability. If each generation unit had a nameplate capacity of
20 MW with the same availability factor, each unit would have a firm ca-
pacity of 18 MW. This 1.17 times peak demand firm capacity requirement,
or 65 generation units, would ensure that system demand is met with
999 probability. This example illustrates that in an electricity supply in-
dustry based on dispatchable thermal generation units, where each unit
has a 10% chance of being unavailable, the system demand peak will be
met with a very high probability with a firm capacity requirement of
1.17 times peak demand if all the generation units are small relative to
the system demand peak.

Introducing renewables into a capacity-based long-term RA mecha-
nism considerably complicates the problem of computing the probabil-
ity of meeting system demand peaks for two major reasons. First, the
ability to produce electricity depends on the availability of the underly-
ing renewable resource. A hydroelectric resource requires water behind
the turbine, a wind resource requires wind to spin the turbine, and a so-
lar facility requires sunlight to hit the solar panels. Second, and perhaps
most important, the availability of water, wind, or sunshine to renew-
able generation resources is highly positively correlated across locations
for a given technology within a given geographic region. This fact inval-
idates the assumption of independence of energy availability across lo-
cations that allows a firm capacity mechanism to ensure system demand
peaks can be met with a very high probability. For example, if the cor-
relation across locations in the availability of generation units is suffi-
ciently high, then a 0.9 availability factor at one location would imply



164 Wolak

only a slightly higher than a 0.9 availability factor for meeting system
demand, almost regardless of the amount intermittent renewable capac-
ity that is installed.

Hydroelectric facilities have been integrated into firm capacity regimes
by using percentiles of the distribution of past hydrological conditions for
that generation unit to determine its firm capacity value. However, this
approach only partially addresses the problem of accounting for the high
degree of contemporaneous correlation across locations in water avail-
ability in hydroelectric-dominated systems. There is typically a signifi-
cant amount of data available on the marginal distribution of water avail-
ability at individual hydroelectric generation units. However, the joint
distribution of water availability across all hydro locations is likely to
be more difficult to obtain. The weather-dependent intermittency in en-
ergy availability for hydroelectric resources is typically on an annual fre-
quency. There are low-water and high-water years depending on global
weather patterns such as the El Nifio and La Nifia weather events, as dis-
cussed in McRae and Wolak (2016).

Incorporating wind or solar generation units into firm capacity mech-
anisms is extremely challenging for several reasons, and increasingly so
as the share of energy produced in a region from these resources increases.
The intermittency in energy supply is much more frequent than it is for
hydroelectric energy. There can be substantial differences across and
within days in the output of wind and solar generation units. Moreover,
if stressed system conditions occur when it is dark, the firm capacity of a
solar resource is zero. Similarly, if stressed system conditions occur when
the wind is not blowing, a likely outcome on extremely hot days, the firm
capacity of a wind resource is zero.

The contemporaneous correlation across locations in the output of so-
lar or wind generation resources for a given geographic area is typically
extremely high. There is even a high degree of correlation across locations
in the output of wind and solar resources. Again, information on the mar-
ginal distribution of wind or solar energy availability at a location is
much more readily available than the joint distribution of wind and solar
energy availability for all wind and solar locations in a region. For these
reasons, calculating a defensible estimate of the firm capacity of a wind or
solar resource that is equivalent to the firm capacity of a dispatchable
thermal generation resource is extremely difficult, if not impossible.

Wolak (2016) demonstrates the extremely high degree of contempora-
neous correlation between the energy produced each hour of the year by
solar and wind facilities in California. For each of the 13 solar locations
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and 40 wind locations in the California ISO control area studied, Wolak
(2016) computes the hourly capacity factor—hourly output of the gen-
eration unit divided by its nameplate capacity—from April 1, 2011, to
March 31,2012. Let F;, = ( fun, fon, - - -, fxn) equal the vector of locational ca-
pacity factors for K renewable energy locations for hour &, where f;, is
capacity factor for hour / at location i. Each of the locational capacity fac-
tors, f;, is a random variable that takes on values in the interval [0, 1]. Let
the contemporaneous covariance matrix F, equal 3, a positive definite
(K x K) matrix, where the (7, 7) element is the variance of f;, and the (i, j)
element is the covariance between f;, and f;. Using the singular value
decomposition of a positive definite matrix implies that 3, = SAS’, where
A is a diagonal matrix composed of the eigenvalues of X and S is an or-
thogonal matrix ('S = I, a K x K identity matrix) composed of the eigen-
vectors of 2. It can be shown that the sum of the eigenvalues of %, which
is the sum of the diagonal elements of A, is equal to the sum of diagonal
elements of 3, which is also equal to the sum of the variances of f;, for
i=1,2,..., K. The ratio of the largest eigenvalue to the sum of the diag-
onal elements of 3 (sum of the variances of the f;) is a measure of the
extent of contemporaneous correlation between the elements of F,.

For the case of the 13 solar locations in California, the largest eigen-
value is equal to 80% of the sum of the variances of the f;, for all 13 solar
locations, which indicates a substantial degree of contemporaneous corre-
lation in hourly values of f;, across the K locations. For the 40 wind loca-
tions in California, the largest eigenvalue is more than 50% of the sum
of the variances of all 40 locations. For the 53 wind and solar locations,
the first eigenvalue is equal to slightly less than 50% of sum of the vari-
ances of all these 53 locations. For comparison, if the f;, fori=1,2, ...,
K were independently distributed random variables, all with the same
variance, these percentages would equal 100 x (1/K), where K is number
of locations.

The high degree of contemporaneous correlation across locations in
hourly capacity factors requires a methodology for computing firm ca-
pacity that accounts for the joint distribution of hourly capacity factors
across locations throughout the year. Not only does this methodology
need to account for the contemporaneous correlation in capacity factors
across locations, but also the high degree of correlation of capacity fac-
tors over time for the same locations and other locations. California cur-
rently uses an effective load carrying capacity (ELCC) methodology for
computing the firm capacity values of wind and solar generation units.
The ELCC methodology was introduced by Garver (1966) and it measures



166 Wolak

the additional load that the system can supply from a specified increase
inthe MW of that generation technology with no net change in reliability.
The loss of load probability, which is the probability that system demand
will exceed the available supply, is the measure of reliability used in the
ELCC calculation.

Consistent with the results of Wolak (2016), the ELCC values for solar
generation resources in California have declined as the amount of solar
generation capacity in the state has increased. For example, a recent
study prepared for California’s three investor-owned utilities (Carden,
Dombrowsky, and Winkler 2020), Southern California Edison, Pacific
Gas and Electric, and San Diego Gas and Electric, recommended ELCC
values for a MW of fixed-mount solar photovoltaic capacity for 2022 of
approximately 5% of the nameplate capacity. Their estimates for 2026
are less than half that amount, and those for 2030 are less than one-
fourth that amount. These declines in ELCC values are due to the fore-
cast increase in the amount of solar generation capacity in California.

To understand the computational and data compilation challenge as-
sociated with calculating the ELCC of a new generation unit, suppose
there are K existing generation units in an electricity supply industry
and C; is the installed capacity at location i in MW, so that the MWh pro-
duced at location i in hour / is equal to fi, x Ci, where f;, is the capacity
factor at location i during hour h. Let L, equal system load during hour
h and \(F, L) equal the joint density of (F}, L;)’, where Fj, is defined
above. The loss of load probability during hour / is equal to LOLP;, =
E\(I[ZE, fu x Ci < L)), where I[A] is equal to 1 if the event is true and
equal to zero otherwise and E,(.) denotes the expectation taken with
respect to M(F, L). The annual loss of load expectation is defined as
LOLE = Z7$LOLP;. The “1 day in 10 years” criteria for the LOLE im-
plies 2.4 hours per year or 0.00027397.

Let the current value of the LOLE equal LOLE(Current). To define the
ELCC of a Q MW of intermittent renewable capacity at a new location, let
A equal the increase in load that can be served by this additional Q MW
and still maintain LOLE(Current) and A(F, L, f(new)) the joint density of
(F', L, f(new))', where f(new) is the hourly capacity factor at the new gen-
eration unit location. The system load increment associated with the Q
MW of new investment is the solution to the following equation in A,

LOLE(Current) = E, (1 [2{; 4 % Ci+Q % f(new), < Ly + AD,

where E () is the expectation with respect to A(F, L, f(new)). The ELCC
of this Q MW unit is defined as ELCC = A/Q. This expression illustrates
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the massive data and computational requirements associated with com-
puting the ELCC. First, an estimate of the joint density of A(F, L, f{lnew)) is
required for every hour of the year. Second, a K + 2 dimensional inte-
gration must be performed 8,760 times to compute the right-hand-side
expression. Third, this equation must be solved numerically for A. Con-
sequently, all implementations of this process make simplifying assump-
tions that can have a substantial impact on the resulting ELCC value as
shown in Kahn (2004).

An additional problem with computing the firm capacity of a solar or
wind generation resource using the ELCC methodology is that the same
QMW investment is likely to be able to serve different increments to sys-
tem demand depending on the location of the investment, the location of
the increment to demand, and the size and location of other renewable
resources in the region. This leaves the system operator with two diffi-
cult choices for setting the value of firm capacity for solar and wind re-
sources. The first would be to set different values of firm capacity for re-
sources based on their location in the transmission network. This would
likely be a very politically contentious process because of the many as-
sumptions that go into computing the ELCC of a resource. The second
approach would set the same firm capacity value for all resources em-
ploying the same generation technology. This means that two resources
with very different ELCC values could sell the same product, to the po-
tential detriment of overall system reliability.

These facts, and the fact that what is predicted to be the major source
of electricity in the future in California has been estimated to have a little
firm capacity value, imply that it would be prudent for California to con-
sider alternatives to its capacity-based long-term resource mechanism if
it intends to meet its goals of obtaining 50% of the state’s energy from
renewable sources by 2025 and 60% by 2030 and increase the use of elec-
tricity in space heating and personal transportation.

IV. Experience with Long-Term RA Mechanisms

This section presents an analysis of the performance of the California
and Texas markets during stressed system conditions. These states are
also the two regions of the continental United States with the largest
shares of intermittent renewables in their energy mix. The experience
of the California market during August 2020 provides an example of the
shortcomings of the existing capacity-based long-term RA mechanism de-
scribed in the previous section. The experience of Texas demonstrates that
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even a wholesale market with an extremely high offer cap still suffers from
the reliability externality discussed in Section IL

A. California

Figure 1A plots the time series of in-state generation capacity in MW by
technology in California between 2001 and 2020. Figure 1B plots the
time series of in-state electricity generation in gigawatt-hours (GWh)
for the same time period. California’s renewables portfolio standard
(RPS) was established in 2002 with the requirement that California ob-
tain 20% retail electricity sales from renewable resources by 2017. Fig-
ure 1A shows that the major increase in renewable generation capacity
did not begin until later in the decade, and most of that came in the form
of wind generation units. The RPS requirement was accelerated to 33%
by 2020, starting in 2013. This was followed by a significant increase in
investments in solar photovoltaic (PV) capacity.

Between 2013 and 2019, California retired 2,254 MW of nuclear capacity
at the San Onofre Nuclear Generating Station (SONGS). Over the same time
period, natural gas generation capacity in California fell by 8,529 MW.
Solar PV and solar thermal capacity increased by 8,471 MW and wind gen-
eration capacity increased by 188 MW over this same period. It is im-
portant to bear in mind that the SONGS facility typically ran at annual
average capacity factor of more than 90%, whereas solar facilities in Cal-
ifornia had an annual average capacity factor in 2020 of 24.67% and wind
facilities had a 24.09% annual average capacity factor in 2020.* Natural
gas facilities typically have annual availability factors greater than 85%
but currently run at a significantly lower annual average capacity factors
because of the large amount of renewable generation capacity in the state.
Consequently, replacing the 10,750 MW reduction in thermal generation
capacity with 8,712 MW of intermittent wind and solar capacity signifi-
cantly reduces the amount of firm capacity available to the California ISO.

An important factor in allowing the California ISO to meet demand
with significantly less firm capacity is that California has more than
18,000 MW of transmission capacity between it and the rest of the West-
ern Interconnection, also called the Western Electricity Coordinating
Council (WECC), which contains all western US states and Canadian
provinces.’ Historically, California obtains between 25% and 33% of its
annual consumption from electricity imports from hydroelectric units
in the Pacific Northwest and coal-fired and natural gas-fired generation
units in the desert Southwest.
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California’s substantial import dependence is another strong argu-
ment against a capacity-based long-term RA mechanism. Kirchoff’s
laws governing the flow of electricity in transmission and distribution
networks imply that electricity imports from neighboring states occur
because these regions produce more electricity than they consume and
California consumes more electricity that it is producing.® This requires
system operators in neighboring states to ensure that the agreed-upon
amount of excess generation in their states is produced, so that the agreed-
upon imports will flow into California. Consequently, as a rule, California
cannot purchase firm capacity from neighboring states. At best, California
can purchase commitments from suppliers located outside the state that
they will schedule specified quantities of energy imports into the state. Ex-
actly which generation units located outside of California will provide this
energy is largely unknown until real-time operation. It depends on many
factors including the real-time output of all generation units in California
and the rest of the WECC, the configuration of the transmission network in
the WECC, and location and level of demand at all locations throughout
the WECC.

Rolling Blackouts on August 14-15, 2020

In mid-August of 2020, California and neighboring states in the rest of
the Western Interconnection experienced a sustained period of extremely
hot weather. This led the California ISO to curtail firm load by declaring
rolling blackouts during the late evening on August 14 and 15. The Cal-
ifornia ISO also came very close to having to curtail firm load during
August 16-18. This section documents the failure of the state’s firm capacity-
based long-term RA mechanism to ensure sufficient energy to meet sys-
tem demand during the portions of August 14 and 15 when the rolling
blackouts occurred.

Figure 2A presents the 5-minute demand, 5-minute net demand (the
difference between demand and wind and solar energy production), and
the hour-ahead demand forecast for August 14, 2020. This net demand
must be met by dispatchable generation resources in California or elec-
tricity imports. As shown in figure 14, the vast majority of these dis-
patchable in-state resources are powered by natural gas. The rectangle
between 18:00 and 19:00 denotes the time interval when the rolling black-
out occurred. Figure 2B presents the same information for August 15,
2020, along with a rectangle denoting when rolling blackouts occurred.
Figure 3A compares these demands to those on August 16-18. The dashed
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Fig.2. A, System demand, net demand, and hour-ahead forecast demand in megawatts
(MW) on August 14, 2020. B, System demand, net demand, and hour-ahead forecast de-
mand on August 15, 2020. Color version available as an online enhancement.

line on the bottom of the graph plots the hourly demands on June 29, 2020,
which is an ideal day for solar energy production, as shown in figure 3B.
The hourly demands on August 18 were uniformly higher than the de-
mands on August 14 and 15 and the demand on August 17 was higher
than the demand on August 14, even though blackouts occurred on Au-
gust 14 and 15.

The rolling blackouts on August 14 and 15 were necessitated by the
fact that the net demand in California exceeded the amount of available
dispatchable generation capacity in California and amount of electricity
imports available during the evening hours. This outcome occurred for
a variety of reasons. First, the demand for electricity in California was
high because of the intensive use of air conditioning due to high in-state
temperatures. Second, a reduced supply of intermittent renewable genera-
tion increased the net demand that must be met by dispatchable generation
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units in California or electricity imports. Third, extreme temperatures in
the rest of the western United States and Canada reduced the amount of
electricity produced in the rest of the WECC that could be imported into
California.

Figure 3B presents the first factor contributing to the events of Au-
gust 14-18 by plotting the hourly capacity factor of solar generation units
in California on these days. The dashed line is the hourly capacity factor
for solar generation units in California for June 29, 2020. During much of
the day on August 14 and 16-18, the hourly capacity factor of the solar
generation units in California is lower than it was on June 29, 2020. This
is particularly true for the evening hours when the rolling blackouts were
declared.

Figure 4A provides one explanation for this outcome. It plots the hourly
temperatures within the day in Barstow, California, for August 14-18
and for June 29, 2020. Barstow is located near a significant fraction of
the solar generation capacity in California. Hourly temperatures during
the day on August 14-18 were much higher than they were on June 29,
which is close to an ideal day for electricity to be produced from a solar
PV facility. Solar panels convert light into electricity, and this occurs with
maximum efficiency at a panel temperature of 77°F. The efficiency of a so-
lar panel declines linearly with every degree its temperature is above 77°F.
The extremely high temperatures during the day on August 14-18 signif-
icantly reduced the efficiency at which the solar panels converted light into
electricity. The solar panels were also likely to be significantly hotter later
in the day than earlier in the day given the pattern of daily temperatures
shown in figure 4A. Another contributing factor to the lower injections of
electricity to the transmission grid from solar generation facilities during
August 14-18 is the larger demand for electricity for on-site cooling on
these days relative to June 29, 2020.

As shown in the next subsection, the firm capacity numbers assigned
to solar generation units in California only vary by month, and do not
depend on the outside temperature. However, as the share of solar en-
ergy increases in California, even a 5% reduction in solar output on high
temperature days coupled with the likely increase in the demand for
electricity for space cooling can lead to more days like August 14 and 15
in California.

Figure 4B plots the hourly capacity factors within the day for Cali-
fornia’s wind generation units for the same days as figure 4A. Consistent
with the high temperatures throughout the state, the amount of wind
energy produced was extremely low, particularly during the middle
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of the day, as well during the period of the rolling blackouts. This is
consistent with the fact that wind blows because of temperature differ-
entials between locations, and on extremely hot days in California and
neighboring states temperatures are similar across locations. The hourly
capacity factors on June 29, 2020, are significantly higher throughout the
day, consistent with the milder temperatures throughout that day. The
hourly capacity factors are significantly below the firm capacity values
for August 2020 for wind generation capacity assigned by CPUC of 21%
for the entire day on August 14 and for virtually all daylight hours for
August 15-18.

To investigate the extent to which the various technologies used to
produce electricity in California had statistically distinguishable lower
or higher mean capacity factors during the extreme weather period of
August 14-18 of 2020 than the remainder of the month of August, I
ran the following regression for the hourly capacity factors for each tech-
nology for January 1, 2020, to December 31, 2020:

Cthm = Qpp t+ Sd + Ihde + Endm

where CF,,4, is the capacity factor in hour / of day d of month m, oy, is
an hour-of-day & for month m fixed effect, 8, is the fixed effect for week-
end days (Saturday and Sunday), 1.4 is an indicator variable that is equal
to 1 if hour h of day d of month m is during the August 14-18 of 2020 pe-
riod, and &,,,, is a zero-mean disturbance.

Table 1 presents the 2020 annual mean hourly capacity factors for wind,
solar, and natural gas generation units in California and the estimate of
the change in the mean hourly capacity factor during the August 14-18
period for each technology. For the case of natural gas generation units,
there was no statistically discernable change in the mean capacity factor
during August 14-18, 2020. For the case of both solar and wind, the mean
capacity factor was lower during the August 14-18 period relative to the
remainder of the month of August. For solar it was 0.033 lower, which,

Table 1
Change in Mean Capacity Factor (CF) by Technology for August 14-18, 2020

Solar_CF Wind_CF Natural Gas_CF

Sample Mean of Dependent Variable 2467 .2409 .5946
B -.0330 -.161 .000000649
Standard error (.0140) (.0336) (.00000673)

Note: All regressions include hour-of-day fixed effects for each month of the year. Standard
errors are clustered by day of sample.



176 Wolak

when applied to an installed capacity of solar of close to 14,000 MW, im-
plies an average hourly reduction in output of close to 500 MWh. For
wind it was 0.161 lower, which, when applied to an installed capacity
of close to 6,000 MW, implies an average hourly reduction in output of
more than 900 MWh. This average shortfall in intermittent renewable
output of 1,400 MWh (= 500 MWh + 900 MWh) is significantly larger than
the amount of load that was curtailed during each of the rolling blackout
events on August 14 and 15.

Given the similarities between hourly system demands on August 14—
18 and the output of renewables on these days, an obvious question is
why rolling blackouts occurred on August 14 and 15 but not on August 16—~
18. Figure 5 provides an answer to this question. Figure 5A plots the
hourly netimports (imports minus exports) scheduled in the day-ahead
market. These are commitments that market participants make to im-
port energy into California the day before the energy actually flows.
The day-ahead imports during the late afternoon and early evening
are very low during August 14-17 relative to the day-ahead imports
on June 29, 2020. This outcome is consistent with temperatures in neigh-
boring states in the Western Interconnection being extremely high on
these 5 days in August and relatively mild on June 29, 2020. This means
the opportunity cost of scheduling an import into California, typically
the highest priced region in the WECC, was extremely low on June 29,
2020. However, there were lucrative opportunities for selling electricity
outside of California on August 1418, because of the extremely high
temperatures and high demand outside the state.

The high net imports scheduled in the day-ahead market on August 18
shown in figure 5A hint at what ultimately led to rolling blackouts on Au-
gust 14 and 15, but not during the period August 16-18. Figure 5B pres-
ents the hourly real-time net imports into California for the same set of
days as figure 5A. The real-time net imports on August 1618 are uni-
formly higher by substantial margins during the late afternoon and early
evening than the same magnitudes on August 14 and 15. The real-time
net imports on August 14 are also significantly lower than those on Au-
gust 15. After the events of August 14 and 15, the California ISO opera-
tors and entities throughout the Western Interconnection significantly in-
creased the supply of imports willing to sell into the California market in
real-time.

A final point about this 5-day period in August is particularly impor-
tant to emphasize. That is the impossibility of preventing sellers of elec-
tricity from finding the highest possible price for their electricity. There
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is evidence that during the August 14-18 period, suppliers committed to
sell energy to California in the day-ahead market under the state’s long-
term RA mechanism did so, but other market participants found more
attractive options for this energy and bought it for export and sold it
in neighboring states at a higher price. California had a $1,000/MWh
cap on offer prices at this time, whereas there was a higher cap on prices
outside of the state. This fact illustrates another shortcoming of a capacity-
based long-term RA mechanism for California. If California purchases a
commitment for sellers outside the state to supply imports to California
and prices outside the state are higher than California’s offer cap, market
participants can purchase this energy at or below the state’s offer cap and
sell it outside the state at a higher price.

One response of California to this set of circumstances would be to
suspend exports of electricity from the state. This market intervention
would discourage suppliers from selling energy into California in the day-
ahead market, because they know they are foregoing the option to sell
at a higher price outside of the state if they do. This fact illustrates what
I like to call the “tyranny of electricity imports,” because if California
wants to attract imports to the state it must be willing to pay a higher price
than neighboring control areas or violate the integrity of its market mech-
anisms. For this reason, suspending exports is likely to have adverse long-
term energy-supply consequences for an import-dependent region like
California.

The Performance of California’s Capacity-Based Long-Term
RA Mechanism

This section evaluates the performance of California’s capacity-based
long-term RA mechanism based on the experience of August 14-18,
2020. Figure 6A plots the monthly average wind capacity factors (CF)
for 2020 and the monthly values of the firm capacity (ELCC) for wind
units set by the CPUC. Figure 6B plots these same to magnitudes for so-
lar generation units.

Except for May for wind and July for solar, the monthly values of firm
capacity are slightly below the average capacity factors for the month.
However, it is important to bear in mind that the firm capacity of a gen-
eration unit is supposed to measure what the facility can reliably pro-
duce under extreme system conditions, not what it produces on aver-
age. Consequently, a monthly average capacity factor less than the firm
capacity value assigned to wind or solar generation resources provides
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further evidence against the viability of a capacity-based long-term RA
mechanism with a large share of intermittent renewables. This outcome
implies there are many hours in the month when the intermittent wind
or solar resource is producing less than its firm capacity. Given the unpre-
dictable intermittent nature of these resources, there is a nonzero probabil-
ity this outcome will occur during a time with stressed system conditions,
similar to those in August 2020.

To understand better the shortcomings of a capacity-based approach
tolong-term RA, figures 7 and 8 break down the information behind fig-
ure 6 into hourly within-day histograms of capacity factors of wind and
solar generation units by month for 2020. Each monthly graph provides
box and whiskers plots of the daily distribution of capacity factors for
that hour of the day. The black bar for each box is the median capacity
factor, the top and bottom of the box are the 75th and 25th percentiles,
and top/bottom lines are 1.5 times the interquartile range from the
75th/25th percentile. Dots are values that are more than 1.5 times the
interquartile range from the 75th/25th percentiles. The horizontal line
on each graph is the monthly value of the firm capacity value for that
month of 2020 from figure 6.

For all months of 2020, there are days when the firm capacity value for
the month for solar generation units exceeds an hourly capacity factor.
This outcome is particularly likely during the March to September time
period. During the early daylight hours and late evening hours of these
months, there are many days when there are hourly capacity factor re-
alizations that are less than the firm capacity value assigned to solar
units for that month. As shown in figure 3B, on all the days during Au-
gust 14-18, 2020, the early morning hours and early evening hours had
solar capacity factors less than the firm capacity value for solar units for
August 2020 of 0.27. As shown in figure 2, rolling blackouts were de-
clared during the early evening hours of August 14 and 15.

The situation for wind units is even worse. There are many months
when the median capacity factor for an hour of the day is below the firm
capacity value for the month for a substantial number of hours of the
day. During August 2020, it was not unusual to have hourly capacity
factors during the early evening that were below the monthly value of
firm capacity of 0.21.

It is important to emphasize that the capacity factors plotted in fig-
ures 68 are on a fleet-wide basis. The hourly capacity factor values for
specific generation sites are likely to be even more volatile. Moreover, for
the reasons discussed in Subsection IV.A, there are likely to be significant
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differences in the distributions of hourly capacity factors across locations,
even though the CPUC assigns all facilities of the same generation technol-
ogy the same firm capacity factor value that changes each month of the
year.”

These results suggest that events like August 14-15 are increasingly
likely to occur under a capacity-based long-term RA mechanism in Cal-
ifornia with an increasing amount of intermittent wind and solar gener-
ation capacity. The state will increasingly need to rely on imports from
neighboring states from dispatchable thermal generation resources when
the net demand for electricity in California is high. Unless California builds
additional controllable generation resources or makes substantial invest-
ments in energy storage, the state will be increasingly reliant on imported
energy under these system conditions. These imports are also likely to be
significantly more carbon intensive than electricity produced inside the
state.

Figure 9 plots the mix of generation capacity in the WECC excluding
California. Any available energy from the hydroelectric capacity shown
in the figure will be used each year regardless of California’s demand
for electricity, because of its very low variable cost of production. Con-
sequently, any marginal increase in electricity imports to California is
likely to come from either natural gas-fired or coal-fired generation. This
means that incremental imports will typically be more carbon intensive
than electricity produced from natural gas-fired units in California,
because California does not have any significant coal-fired generation
capacity.
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Fig.9. Installed capacity in megawatts (MW) by technology in Western Electricity Coor-
dinating Council (WECC) excluding California 2000-2019. Color version available as an
online enhancement.
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B. Texas

To illustrate the existence and consequences of the reliability externality
even in a market with an extremely high offer cap, this section analyzes
the performance of the ERCOT market during two periods with extreme
cold weather in the state. A major difference between these two weather
events was the mix of generation capacity available to meet demand dur-
ing these two periods. The first period is February 1-5, 2011, and the sec-
ond is February 14-18, 2021.

The significant increase in the share of energy supplied by intermittent
wind and solar resources in February 2021 relative to February 2011 ap-
pears to be a major factor in explaining the difference in the performance
of the ERCOT market across these two time periods. However, the more
extreme weather during 2021 versus 2011 and the larger share of home
heating supplied by electricity in Texas in 2021 versus 2011 cannot be
ruled out as factors. As Doss-Gollin et al. (2021) note, the weather during
the 2011 period was not nearly as severe at the weather during 2021 pe-
riod. However, these authors also argue that the 2021 period was not as
severe as a weather period of a similar length that occurred in December
1989. At that time Texas had very little wind generation and a significantly
smaller fraction of households heated with electricity.

Figure 10A plots generation capacity in MW by fuel type in ERCOT
from 2010 to 2020. Figure 10B plots the annual generation in terawatt-
hours (TWh) by fuel type in ERCOT over this same time period. Three
trends are immediately apparent. First, the installed capacity of wind
generation units increased by 15,477 MW and the amount of solar gen-
eration capacity increased by 2,478 MW. Second, coal-fired generation
capacity has declined by 4,619 MW and the production of coal-fired
electricity declined even faster. Finally, the amount of natural gas-fired
generation capacity increased by 3,356 MW and amount of natural gas-
fired generation increased at a slightly lower rate over this period.

Two other facts about the Texas market help explain the severity of
these two supply shortfall periods. First, legally speaking ERCOT is
not electrically interconnected with the rest of the United States.® This
means that unlike California, it is unable to rely on significant amounts
of electricity imports from neighboring states when there are supply
shortfalls or demand spikes in ERCOT. Second, according to the US Cen-
sus Bureau, currently 61% of Texas housing units rely on electricity for
heating, compared with 39.5% nationally.” This makes the electricity de-
mand in Texas extremely sensitive to extreme cold-weather events.
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February 1-4, 2011, versus February 14-18, 2021

Figure 11A plots the hourly capacity factors of coal-fired, natural gas-fired,
nuclear, wind, and solar generation units for the two extreme weather
periods—February 1-4, 2011, and February 14-18, 2021. Because there
were no solar generation units in 2011, this technology is omitted from
the February 1-4 graph. Although there is significant variation in the hourly
capacity factors during these two periods, two differences between them
immediately stand out. First, the average capacity factor of wind genera-
tion units is significantly less during the February 2021 period relative to
the February 2011 period. Recognizing that wind generation capacity in-
creased by 15,472 MW between 2011 and 2021 implies a significant short-
fall in renewable energy production throughout February 14-18, 2021.
Second, there is a significant drop in the nuclear capacity factor during
the second day of the 2021 period, whereas the nuclear capacity factor re-
mains constant during the 2011 time period.
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Figure 11B plots hourly capacity factors for the same technologies for
the entire month of February 2011 and 2021 with the two extreme weather
periods are shaded in the figure. These graphs demonstrate that the low
capacity factors for wind generation units during February 14-18, 2021,
were significantly lower than other hours during February 2021, whereas
the average capacity factors of wind units during February 14 of 2011
was not different from that for remainder of February 2011. For the case
of nuclear power, the average capacity factor during the period February 14—
18 is significantly less than the mean capacity factor for remaining hours
of the month. Finally, for solar units the average capacity is lower during
February 14-18 of 2021 relative to the remainder of the month.

To investigate which technologies had statistically distinguishable
lower or higher mean capacity factors during the extreme weather peri-
ods of February 2011 and February 2021, relative to the remainder of the
month of February, I ran the following regression for the hourly capacity
factor for each technology for the periods March 1, 2010, to February 28,
2011, and March 1, 2020, to February 28, 2021:

Cthm = Qpy + Bd + Ihde + Endm

where CF,,4, is the capacity factor in hour h of day d of month m, o, is an
hour-of-day & for month m fixed effect, 3, is the fixed effect for weekend
days (Saturday and Sunday), I;.4, is an indicator variable that is equal to
1if hour / of day d of month m is during the February time period of 2011
or 2021, and g, is a zero-mean disturbance.

Table 2 presents the estimates of the coefficient associated with 1,4, for
each technology and each February period. The annual mean capacity
factor for each sample period for each technology is also included in

Table 2
Estimated Change in Mean Hourly Capacity Factor (CF) by Technology during
February 1-4, 2011, and February 14-18, 2021, Weather Events

2011 2011 2011 2021 2021 2021
Technology Mean CF  Coefficient Std. Error Mean CF  Coefficient = Std. Error
Coal 7793 0189 .0258 .5993 0167 .0572
Natural gas 3155 3159 .0638 4056 .3061 .0521
Wind 3198 —.0454 0734 .3996 -.2236 .0443
Nuclear 9214 .0005 .0026 9152 -.1641 .0476
Solar N/A N/A N/A 2117 -.0763 .0283

Note: All regressions include hour-of-day fixed effects for each month of the year. Standard
errors are clustered by day of sample.
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the table. For coal-fired generation units there is a slight, but not statis-
tically different from zero, increase in the mean hourly capacity factor
during the extreme weather periods in February 2011 and 2021 versus
other hours in the month. For natural gas units, there is a precisely esti-
mated substantial increase in the mean hourly capacity factor during
both February extreme weather periods. In both 2011 and 2021, the
mean hourly capacity factor of natural gas units increased by more than
0.30 during these extreme weather periods.

For the wind generation units, the capacity factor is 0.2236 less dur-
ing the extreme weather period in 2021 than in other hours of February.
Because there is 24,593 MW of wind generation in ERCOT in 2020, this
reduction in the average capacity factor implies an average MWh re-
duction of wind energy during the February 2021 extreme weather pe-
riod of 5,410 MWh. The nuclear capacity factor fell by 0.1641 during the
extreme weather period, which for an installed capacity of 4,973 MW
implies an average hourly reduction in nuclear generation of 795 MWh.
The solar energy capacity factor fell by 0.0763, which for an installed
capacity of 2,478 MWs implies an average hourly reduction in solar
energy of 173 MWh during the extreme weather period. The total of
these average hourly supply shortfalls during February 14-18, 2021, was
6,400 MWh, with the vast majority coming from intermittent renewable
resources.

These results emphasize the substantial risk of relying of intermittent
renewable energy units to produce during extreme cold weather peri-
ods, even relative to system conditions that typically exist during the
winter months. As the graphs for 2021 in figures 11A and 115 demonstrate,
the average hourly reduction in wind energy production of 5,410 MWh
implies significantly larger reductions for a number of hours during Feb-
ruary 14-18. As shown in both figures, hourly capacity factors very close
to zero occurred at least twice during this time period.

ERCOT and the Reliability Externality

Although the historical peak demand of 72,820 MWh in ERCOT oc-
curred on August 12, 2019, during the 4 p.m. to 5 p.m. hour, demand
during the February 14-18 period was expected to exceed that demand
but did not because rolling blackouts were implemented.'® From analy-
sis of the previous subsection, it seems reasonable to expect that a sim-
ilar supply shortfall could occur during future extreme weather events
as Texas increases the share of wind and solar resources in the state.
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These events demonstrate that having a $9,000/ MWh offer cap on the
short-term market does not eliminate the reliability externality; it only
reduces the frequency of supply shortfall events. The implicit assump-
tion of the ERCOT market that the supply of energy would always ex-
ceed demand at a price at or below $9,000/ MWh turned out to be false
for the weather conditions experienced during February 14-18, 2021.
The large share of housing units heated with electricity makes the demand
for electricity in Texas extremely sensitive to extremely cold temperatures
because these households must increase their demand for electricity to
keep warm.

Consistent with the logic of the reliability externality, there were many
households that paid for their wholesale electricity according to the hourly
short-term price. This decision clearly makes economic sense in vast
majority of hours of the year because short-term wholesale prices typ-
ical reflect substantial amounts of wind and solar energy production.
One company, Griddy, was well known for selling retail electricity in
this manner. Early during the extreme weather event, Griddy told all its
customers to switch retail suppliers.'” Of those that did not switch, many
were unable to pay their bills as a result of purchasing much of their
wholesale electricity during this time period at $9,000/MWh ($9/KWh).
Consequently, ERCOT removed Griddy’s right to operate effective Feb-
ruary 21, 2021.

There were also several retailers that failed to fully hedge the partial
or fully fixed-price retail contracts they sold to customers. These retail-
ers had to purchase energy at $9,000/ MWh and sell it at a fixed price to
these retail customers. There was at least one retailer offering customers
a $100 credit off their final bill and waiving all early termination fees if
they switched providers before February 15, 2021."* This would enable
the retailer to avoid having to purchase wholesale energy at a loss and
sell it to its customers or avoid the likelihood that their customers would
be unable to pay their bills, two outcomes with adverse financial conse-
quences for the retailer.

Given the substantial volatility in wind and solar energy production
in ERCOT, the state’s dependence on electricity for space heating, and
the fact that Texas cannot rely on large amounts of net imports from neigh-
boring states when renewable energy shortfalls occur, the events of Febru-
ary 2021 are not unexpected. Figures 12 and 13 repeat figures 7 and 8 for
the case of ERCOT for the period March 2020 through February 2021.
Each monthly graph gives the same box and whiskers graph of the his-
togram of hourly capacity factors within that month. Because ERCOT
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Fig.12. A, Histograms of hourly solar capacity factors and monthly mean capacity factor
in Electric Reliability Council of Texas (ERCOT) for March 2020-August 2020. B, Histo-
grams of hourly solar capacity factors and monthly mean capacity factor in ERCOT for
September 2020-February 2021.

does not have a firm capacity construct, the horizontal line on each graph
is the monthly mean capacity factor for that technology. Figure 12 shows
that the monthly mean capacity factor for solar resources is generally larger
than the median hourly capacity factor for the early and late daylight hours
of the day for many months of the year.
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Fig.13. A, Histograms of hourly wind capacity factors and monthly mean capacity fac-
tor in Electric Reliability Council of Texas (ERCOT) for March 2020-August 2020. B, His-
tograms of hourly wind capacity factors and monthly mean capacity factor in ERCOT for
September 2020-February 2021.

From April to November 2020, the monthly mean capacity factor for
wind units in ERCOT is above the median capacity factor for most hours
in the middle of the day. During the December to March time period, the
median hourly capacity factor is relatively constant across hours of the
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day. All of these graphs show that there are many hours of the day dur-
ing all months when extremely low capacity factors for wind occur.
These extremely low capacity factors can occur during the summer
months as well as the winter months.

Because ERCOT is not interconnected with the rest of the United States
grid, this implies that the region will need to invest in significant storage
capacity or increase the amount of natural gas-fired generation capacity
to meet the demand for energy during these time periods. These thermal
generation units will run at smaller capacity factors as the share of wind
and solar energy increases. It is unclear whether the necessary storage
units or thermal generation units will be built and remain financially vi-
able without a long-term RA mechanism in ERCOT.

The Natural Gas Market in Texas

The severity of the electricity supply shortfall during February 15-18,
2021, was exacerbated by events in natural gas markets caused by the
extremely cold weather and curtailment of electricity to natural gas pro-
cessing facilities, natural gas pumping stations, and compressors on nat-
ural gas pipelines and at power plants.”> Because much of the natural
gas currently produced in Texas is associated with the production of
oil, it comes to the surface at low pressure along with other liquids, in-
cluding water. This has two implications for the level of natural gas pro-
duction during cold weather conditions. First, low temperatures can
lead to well freeze-offs, where the raw natural gas stream freezes at the
wellhead or in the natural gas gathering lines, which ultimately stops pro-
duction of natural gas. Second, to pump the oil and associated natural gas
to the surface, process it, and compress it for transportation to natural gas
generation units requires electricity. Many of the natural gas processing fa-
cilities in Texas failed to apply for outage exemptions as essential facilities
before the February 2021 extreme weather event, and as a result were cur-
tailed in the rolling blackouts."*

It is difficult to determine precisely what fraction of the almost 50%
decline in natural gas production during the February 2021 cold snap
was due to freeze-offs versus electricity outages to natural gas process-
ing facilities.”” A significant amount of natural gas-fired generation ca-
pacity was unable to operate during the cold snap because natural gas
could not be delivered to these units.

Requiring all natural gas processing and transportation facilities to be
classified as critical infrastructure that is protected from power outages
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due to supply shortfalls should eliminate this cause of natural gas short-
falls. One natural gas company found that all its natural gas facilities
that had been registered as critical infrastructure did not have their power
turned off during the February 2021 cold snap.'

A more controversial recommendation made by many observers is to
winterize natural gas wells to prevent freeze-offs during cold weather
conditions. This recommendation was made following the 2011 cold
snap but was not implemented for the same reason it is unlikely to be
implemented after 2021 cold snap without an explicit regulatory man-
date. Only around 0.06% of total annual natural gas production in Texas
freezes off on average, and winterizing can cost as much as $100,000 per
well.”” These two figures suggest that it was and continues to be expected
profit-maximizing for Texas natural gas producers not to winterize. In
addition, if the political process decides to mandate winterizing all wells,
this would likely cause producers to abandon many wells rather than
pay the cost to winterize them, which would ultimately reduce the sup-
ply of natural gas in Texas.

C. The Need for Long-Term Storage with Significant Renewables

This section identifies an important characteristic of electricity supply
industries with significant intermittent renewable generation capacity
that provides further evidence against a capacity-based long-term RA
mechanism. This is the potential for long durations of low levels of re-
newable output, particularly in regions where a significant amount of
the renewable energy comes from wind generation units, as is the case
in Texas.

Table 3 presents summary statistics on the annual hourly distribution
of wind, solar, and combined wind and solar output for California from
2013 to 2020. Although the mean hourly output for wind and solar gen-
eration increases across the years, so does the standard deviation of
hourly output. For the case of combined wind and solar generation, the
standard deviation of hourly output has increased more rapidly than
the hourly mean output, as evidenced by the upward trend in the coef-
ficient of variation (CV) across the years."®

This increased variability in wind and solar output has characteristics
that make significant investments in storage capacity necessary if the
share of renewables is increased significantly beyond current levels.
There can be long durations of relatively low levels of energy produc-
tion from the wind and solar generation units. Table 4 presents data
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Table 3
Annual Moments of Hourly Wind, Solar, and Wind and Solar Output in California

2013 2014 2015 2016 2017 2018 2019 2020

Hourly Wind Output (MWh)
Mean 1033.54 1131.32  999.26 1204.73 1235.28 1597.35 1581.63 1551.73
Median 973.79 1035.19  860.06 1092.49 1074.29 1496.55 1439.55 1378.13

Standard deviation 843.79 881.27 82259 918.41 957.56 1161.22 1148.88 1149.84
Coefficient of

variation .82 .78 .82 .76 .78 .73 .73 74
Standard skewness .39 49 .53 41 47 .34 42 45
Standard kurtosis 2.03 2.29 2.18 2.05 2.08 1.92 2.07 2.1

Hourly Solar (MWh)

Mean 315.39 1000.38 1510.80 1910.23 2633.99 2923.06 3035.64 3214.42
Median 1198 5550 90.08 101.91 150.53 174.16 209.95 186.55
Standard deviation 435.64 1290.47 1906.14 2391.94 3257.65 3587.68 3761.14 3907.56
Coefficient of

variation 1.38 1.29 1.26 1.25 1.24 1.23 1.24 1.22
Standard skewness 1.22 .84 .83 .73 .69 .67 72 .66
Standard kurtosis 3.50 2.14 2.63 1.86 1.78 1.75 1.85 1.78

Hourly Combined Wind and Solar Output (MWh)

Mean 1348.93 2131.57 2510.06 3114.96 3869.27 4520.41 4617.28 4766.15
Median 1364.04 1971.03 2030.58 2385.57 2595.63 3255.97 3150.32 3265.43
Standard deviation 883.40 1461.08 1983.06 2426.76 3258.25 3606.08 3818.19 3894.42
Coefficient of

variation .65 .69 .79 .78 .84 .80 .83 .82
Standard skewness .19 45 .63 .55 .6 .55 .62 .57
Standard kurtosis 2.32 2.50 2.95 2.07 1.97 1.96 2.03 1.95

Source: California ISO OASIS website.
Note: MWh = megawatt-hours.

on the distribution of durations of wind and solar energy production be-
low a given threshold during each year from 2013 to 2020. For a given
threshold, say 1,000 MWHh, the following process is applied to compute
each low energy production duration. The first hour in the year that
wind and solar energy production falls below 1,000 MWh starts the du-
ration. This duration ends the first hour that wind and solar energy pro-
duction is above 1,000 MWh. The second duration is defined following
the same process. For example, in 2013 there were 231 durations when
total wind and solar production was less than 1,000 MWh. The mean
length of these durations was 13.54 hours, but there was one duration of
288 hours or 12 days. By 2020, there were roughly the same number of du-
rations of with solar and wind energy production less than 1,000 MWh—
210 durations—but the average length was 7.88 hours, and the longest was
17 hours.
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Table 4
Combined Wind and Solar Output Shortfall Durations in California (Hours)

2013 2014 2015 2016 2017 2018 2019 2020

Threshold value 1,000 MWh

Number of durations 231 263 256 228 247 171 183 210
Mean 13.54 8.46 9.54 8.73 7.96 9.39 9.07 7.88
Standard deviation 27.43 6.08 5.70 5.79 5.49 5.65 533 5.31
Maximum 288 20 18 21 16 17 17 17
Threshold value 3,000 MWh

Number of durations 53 298 356 364 388 380 396 386
Mean 16047  21.42 15.85 1429 1251 10.72 10.55 10.62
Standard deviation 238.97 4227 8.57 8.42 5.01 594 6.01 524
Maximum 1,283 684 140 141 65 44 44 21
Threshold value 5,000 MWh

Number of durations 1 71 226 321 349 356 353 366
Mean 8,758  119.20 32.84 19.84 16.31 1533 1550 14.58
Standard deviation NA 260.95 65.10 21.56 8.19 6.32 721 3.09
Maximum 8,758 1809 875 299 92 90 68 44
Threshold value 7,000 MWh

Number of durations 1 1 19 131 284 318 318 349
Mean 8,758 8,759 457 61.89 2336 19.38 19.16 16.94
Standard deviation NA NA 800.28 155.67 36.90 22.03 20.62 9.44
Maximum 8,758 8,759 3,177 1,363 478 226 239 116
Threshold value 10,000 MWh

Number of durations 1 1 3 1 58 161 199 200
Mean 8,758 8,759 2918.33 8,784 146.53 4891 37.92 37.64
Standard deviation NA NA 279392 NA 363.65 137.20 98.65 93.89
Maximum 8,758 8,759 5583 8,784 2,145 1,173 876 849

Source: California ISO OASIS website.

In 2020 there was almost 20,000 MW of wind and solar generation ca-
pacity in California, yet for 50% of the hours of the year, 3,265.43 MWh
or less energy was produced from these units. In 2020, the average length
of the duration of energy production less than 5,000 MWh was 14.58 hours
and the longest duration was 44 hours or slightly less than 2 days. For the
10,000 MWh threshold in 2020, the longest duration was 849 hours or
more than 35 days.

Tables 5 and 6 repeat the information in tables 3 and 4 for ERCOT for
2018-20. Although ERCOT has almost 27,000 MW of wind and solar ca-
pacity in 2020, during 50% of the hours of the year less than 10,789 MWh
is produced by this generation capacity. The advantage of the wind capacity
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Table 5
Annual Moments of Hourly Wind and Solar Output in ERCOT (MWh)

2018 2019 2020
Mean 8337.5 9258.6 10910.6
Median 8074.2 8996.5 10769.8
Standard deviation 4179.5 4360.7 4686.9
Coefficient of variation .50 47 43
Standard skewness .16 .16 .03
Standard kurtosis 1.99 2.00 2.02

Source: Electric Reliability Council of Texas (ERCOT).
Note: MWh = megawatt-hours.

in ERCOT is the significantly higher average capacity factors shownin fig-
ure 13 versus the average solar capacity factors shown in figure 12.

The downside of significant wind capacity in ERCOT is the substan-
tially longer maximum durations of low output levels. For example, in
2020 the longest duration of wind and solar output less than 5,000 MWh

Table 6
Combined Wind and Solar Output Shortfall Durations in ERCOT (Hours)

2018 2019 2020
Threshold value 5,000 MWh
Number of durations 202 189 146
Mean 11.33 9.34 7.01
Standard deviation 13.40 10.05 8.09
Maximum 94 60 60
Threshold value 7,500 MWh
Number of durations 222 221 242
Mean 18.21 15.62 10.30
Standard deviation 25.56 17.23 12.15
Maximum 239 133 97
Threshold value 10,000 MWh
Number of durations 206 241 247
Mean 26.93 20.67 15.98
Standard deviation 45.26 25.16 21.30
Maximum 425 141 230
Threshold value 15,000 MWh
Number of durations 83 143 207
Mean 99.99 53.83 32.29
Standard deviation 190.65 79.05 56.01
Maximum 1,310 428 387

Source: Electric Reliability Council of Texas (ERCOT).
Note: MWh = megawatt-hours.
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is 60 hours or 2.5 days. Unlike solar energy, which relies on daily sun-
light with varying levels of intensity, there are sustained periods with
very low wind energy production.

The potential for multiday durations of low energy production implies
the need for significant storage investments to ensure a reliable supply of
energy so California and Texas can reduce significantly the amount of
fossil fuel energy they consume. Although California still has the option
to significantly increase its consumption of imported electricity from neigh-
boring states during these system conditions, unless Texas interconnects
with the rest of the United States this option is not available to ERCOT.

Storage generation units make money buying energy at low prices
and selling it at high prices. Capacity-based long-term RA mechanisms
typically suppress energy price volatility because of the mandates that
retailers purchase multiples greater than 1 of their peak demand in firm
capacity. Therefore, a capacity-based long-term RA mechanism pro-
vides less market revenue to the storage units necessary to manage sus-
tained periods of low renewable energy production. Consequently, one
key criterion for a long-term RA mechanism in a high renewables share
market is allowing the short-term energy price volatility that will sup-
port the necessary storage investments.

V. The SFPFC Approach to Long-Term RA

As the previous sections have demonstrated, a capacity-based approach
to long-term RA mechanism is poorly suited to a region with significant
intermittent renewables. The primary reliability challenge is not adequate
generation capacity to serve demand peaks, but adequate energy available
to serve realized demand during all hours of the year. As the example of
California on August 14 and 15, 2020, demonstrates, supply shortfalls do
not necessarily occur during system demand peaks, but during net de-
mand peaks.

Because of the substantial contemporaneous correlation in hourly
output across locations and across renewable energy technologies, en-
suring sufficient supply to meet demand throughout the year will re-
quire taking full advantage of the mix of available generation resources.
Intermittent renewable resources must reinsure the energy they sell in
the forward market with dispatchable generation resources and storage
devices. The long-term RA mechanism must also recognize the increas-
ing weather dependence of electricity demand with more customers
heating and cooling their homes with electricity.
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The SFPFC mechanism results in the realized system demand each
hour of the compliance period being covered by a fixed-price forward
contract. The SFPFC approach to long-term RA recognizes that a supplier
with the ability to serve demand at a reasonable price may not do so if it
has the ability to exercise unilateral market power in the short-term energy
market. As Wolak (2000) demonstrates, an expected profit-maximizing
supplier with the ability to exercise unilateral market power with a fixed-
price forward contract obligation would like to minimize the cost of supply-
ing the quantity of energy sold in forward contract. The SFPFC long-term
RA mechanism takes advantage of this incentive by requiring retailers
to hold hourly fixed-price forward contract obligations for energy that
sum to the hourly value of system demand. The SFPFC mechanism im-
plies that all expected profit-maximizing suppliers would like to minimize
the cost of meeting their hourly fixed-price forward contract obligations,
the sum of which equals the hourly system demand for all hours of the
year.

To understand the logic behind the SFPFC mechanism, consider the
example of a supplier that owns 150 MW of generation capacity that
has sold 100 MWHh in a fixed-forward contract at a price of $25/MWh
for a certain hour of the day. This supplier has two options for fulfilling
this forward contract: (1) produce the 100 MWh energy from its own
units at their marginal cost of $20/MWh or (2) buy this energy from the
short-term market at the prevailing market-clearing price. The supplier
will receive $2,500 from the buyer of the contract for the 100 MWh sold,
regardless of how it is supplied. This means that the supplier maximizes
the profits it earns from this fixed-price forward contract sale by minimiz-
ing the cost of supplying the 100 MWh of energy.

To ensure that the least-cost “make versus buy” decision for this
100 MWh is made, the supplier should offer 100 MWh in the short-term
market at its marginal cost of $20/MWh. This offer price for 100 MWh
ensures that if it is cheaper to produce the energy from its generation
units—the market price is at or above $20/MWh—the supplier’s offer
to produce the energy will be accepted in the short-term market. If it
is cheaper to purchase the energy from the short-term market—the mar-
ket price is below $20/MW—the supplier’s offer will not be accepted
and the supplier will purchase the 100 MWh from the short-term market
at a price below $20/MWh.

This example demonstrates that the SFPFC approach to long-term RA
makes it expected profit-maximizing for each seller to minimize the cost
of supplying the quantity of energy sold in this forward contract each
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hour of the delivery period. By the logic of the above example, each sup-
plier will find it in its unilateral interest to submit an offer price into the
short-term market equal to its marginal cost for its hourly SFPFC quan-
tity of energy, to make the efficient “make versus buy” decision for ful-
filling this obligation.

The incentives for supplier offer behavior in a short-term wholesale
electricity market created by a fixed-price forward contract obligation
are analyzed in Wolak (2000). Consider the case of a single hour in the
short-term market. Let QS equal the amount of energy produced and
sold in the short-term market by the supplier, PS be the short-term
wholesale price, PC be the price of SFPFC energy, and QC be the quan-
tity of SFPFCs sold by the supplier for this hour. The supplier’s variable
profit for the hour is:

Profit = PS x QS — C(QS) — (PS - PC) x QC

=PS x (QS-QC) + PC x QC - C(QS) @
where C(QS) is variable cost of producing QS. The first term in the first
expression in equation (1) shows the supplier’s variable profits from sell-
ing QS MWh at PS in the short-term market. The second term is the net
payment to the seller of QC SFPEC contracts at price PC. The second ex-
pression in the above equation demonstrates that a supplier only has an
incentive to raise the short-term price if it sells more energy in the short-
term market, QS, than its fixed-price forward contract obligation, QC.
This expression also demonstrates that the supplier wants the lowest
possible price when it sells less energy in the short-term market than
its fixed-price forward contract obligation.

Under the SFPFC mechanism, each supplier knows that the sum of the
values of the hourly SFPFC obligations across all suppliers is equal the
system demand. This means that each supplier of SFPFCs knows that its
competitors have substantial fixed-price forward contract obligations
for that hour. This implies that all suppliers know that they have limited
opportunities to raise the price they receive for short-term market sales
beyond their hourly SFPFC quantity.

As discussed below, a supplier’s fixed-price forward quantity for an
hour under the SFPFC mechanism increases with the value of hourly
system demand. Therefore, the supplier that owns 150 MW of capacity
in the above example has a strong incentive to submit an offer price close
to its marginal cost for the capacity of its generation unit to ensure that
its hourly production is higher than the realized value of its SFPFC



200 Wolak

energy for that hour. Therefore, the SFPFC mechanism not only ensures
that system demand is met every hour of the year but also provides
strong incentives for this to occur at the lowest possible short-term price.

A. SFPFC Approach to RA

This long-term RA mechanism requires all electricity retailers to hold
SFPFCs for energy for fractions of realized system demand at various
horizons to delivery. For example, retailers in total must hold SFPFCs
that cover 100% of realized system demand in the current year, 95% of
realized system demand 1 year in advance of delivery, 90% 2 years in ad-
vance of delivery, 87% 3 years in advance of delivery, and 85% 4 years
in advance of delivery. The fractions of system demand and number of
years in advance that the SFPFCs must be purchased are parameters
set by the regulator to ensure long-term RA. The SFPFCs would clear
against the quantity-weighted average of the hourly locational prices
at all load withdrawal locations in the short-term wholesale market.

SFPFCs are shaped to the hourly system demand within the delivery
period of the contract. Figure 14 contains a sample pattern of system de-
mand for a four-hour delivery horizon. The total demand for the four
hours is 1,000 MWh, and the four hourly demands are 100, 200, 400,
and 300 MWh. Therefore, Firm 1 that sells 300 MWh of SFPFC energy
has the hourly system demand-shaped forward contract obligations of
30 MWh in hour 1, 60 MWh in hour 2, 120 MWh in hour 3, and 90 MWh
in hour 4. The hourly forward contract obligations for Firm 2 that sold
200 MWh SFPFEC energy and Firm 3 that sold 500 MWh of SFPFC energy
are also shown in figure 15. These SFPFC obligations are also allocated
across the four hours according to the same four hourly shares of total
system demand shown in figure 14. This ensures that the sum of the hourly
values of the forward contract obligations for the three suppliers is equal
to the hourly value of system demand. Taking the example of hour 3,
Firm 1’s obligation is 120 MWh, Firm 2’s is 80 MWh, and Firm 3’s is
200 MWh. These three values sum to 400 MWh, which is equal to the
value of system demand in hour 3 shown in figure 14.

These SFPFCs are allocated to retailers based on their share of system
demand during the month. Suppose that the four retailers in figure 16
consume 1/10, 2/10, 3/10, and 4/10, respectively, of the total energy
consumed during the compliance month for SFPFCs. This means that
Retailer 1 is allocated 100 MWh of the 1,000 MWh SFPFC obligations
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Energy (MWh) Daily Demand
100 + 200 + 400 + 300 = 1000 MWh
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Fig. 14. Hourly system demands. Color version available as an online enhancement.

for the four hours, Retailer 2 is allocated 200 MWh, Retailer 3 is allocated
300 MWHh, and Retailer 4 is allocated 400 MWh. The obligations of each
retailer are then allocated to the individual hours using the same hourly
system demand shares used to allocate the SFPFC energy sales of suppliers

Three Firms:
Firm 1 sells 300 MWh

Firm 2 sells 200 MWh
Firm 3 sells 500 MWh
Total Amount Sold by Three Firms = 1000 MWh

Firm 1 Firm 2 Firm 3
Per Period Per Period Per Period
Forward Contract Obligation Forward Contract Obligation Forward Contract Obligation
MWh MWh MWh 200
150
120
100
%
80
60 60
0
30
20
T2 3 4 1 2 & 4 e 7 3 4 ° Tme
Fig. 15. Hourly forward contract quantities for three suppliers. Color version available

as an online enhancement.



202 Wolak

Four Retailers:
Retailer 1 holds 100 MWh

Retailer 2 holds 200 MWh
Retailer 3 holds 300 MWh
Retailer 4 holds 400 MWh
Total Amount Held by Four Retailers = 1000 MWh

Retailer 1 Retailer 2 Retailer 3 Retailer 4
Per Period Per Period Per Pe Per Period
Forward Contract Obligation Forward Contract Obligation Forward Contract Obligation Forward Contract Obligation
MWh MWh MWh MWh 160
120 120
90
80 80
60 60
10 40 10
30 30
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10
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Fig.16. Hourly forward contract quantities for four retailers. Color version available as
an online enhancement.

to the four hours. This allocation process implies Retailer 1 holds 10 MWh in
hour 1, 20 MWh in hour 2, 40 MWh in hour 3, and 30 MWh in hour 4. Re-
peating this same allocation process for the other three retailers yields the
remaining three hourly allocations shown in figure 16. Similar to the case
of the suppliers, the sum of allocations across the four retailers for each hour
equals the total hourly system demand. For period 3, Retailer 1’s holding
is 40 MWh, Retailer 2’sis 80 MWh, Retailer 3’s is 120 MWh, and Retailer4’s
is 160 MWh. The sum of these four magnitudes is equal to 400 MWh,
which is the system demand in hour 3.

B.  Mechanics of Standardized Forward Contract Procurement Process

The SFPFCs would be purchased through auctions several years in ad-
vance of delivery so new entrants may compete to supply this energy.
Because the aggregate hourly values of these SFPFC obligations are al-
located to retailers based on their actual share of system demand during
the month, this mechanism can easily accommodate retail competition.
If one retailer loses load and another gains it during the month, the share
of the aggregate hourly value of SFPFCs allocated to the first retailer
falls and the share allocated to the second retailer rises.
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The wholesale market operator would run the auctions with over-
sight by the regulator. One advantage of the design of the SFPFC prod-
ucts is that a simple auction mechanism can be used to purchase each
annual product. A multiround auction could be run where suppliers
submit the total amount of annual SFPFC energy they would like to sell
fora given delivery period at the price for the current round. Each round
of the auction the price would decrease until the amount suppliers are
willing to sell at that price is less than or equal to the aggregate amount
of SFPFC energy demanded.

The wholesale market operator would also run a clearinghouse to
manage the counterparty risk associated with these contracts. All US
wholesale market operators currently do this for all participants in their
energy and ancillary services markets. In several US markets, the mar-
ket operator also provides counterparty risk management services for
long-term financial transmission rights, which is not significantly different
from performing this function for SFPFCs. Both buyers and sellers would
be required to post collateral with the wholesale market operator to en-
sure that each market participant finds it unilaterally profit-maximizing
to meet its financial commitments for the SFPFC energy that it has pur-
chased or sold.

SFPFCs auctions would be run on an annual basis for deliveries start-
ing 2, 3, and 4 years in the future. In steady state, auctions for incremen-
tal amounts of each annual contract would also be needed so that the ag-
gregate share of demand covered by each annual SFPFC could increase
over time. The eventual 100% coverage of demand occurs through a fi-
nal true-up auction that takes place after the realized values for hourly
demand for the delivery period are known.

C. True-Up Auctions and Settlement of SEPFCs

The vast majority of SFPFC contracts will be purchased in advance of
delivery. However, because the mechanism requires that the total quan-
tity of SFPFC energy sold during the compliance period equal the realized
demand during that same period, after each compliance period there needs
to be true-up auctions to buy back unused SFPFC energy or purchase ad-
ditional SFPFC energy.

These true-up auctions serve the same role as the real-time market in a
two-settlement short-term energy market, with two key differences. First,
the aggregate demand for additional SFPFC energy is known when sup-
pliers submit their offers into incremental true-up auction or the total
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amount of SFPFC energy to be purchased by suppliers is known when
they submit their bids to the true-up auction. Second, suppliers to the
true-up auction know the quantity-weighted average hourly short-term
market price during compliance period that all SFPFC energy sold or
purchased in the true-up auction will clear against when they submit
their bids or offers to these auctions. This implies that a supplier would
be unlikely to be willing to sell SFPFC energy at a price less than or equal
to this quantity-weighted average short-term price or buy SFPFC energy
at a price above this quantity-weighted average short-term price.

It is also important to emphasize that the true-up auctions are very
unlikely to trade significant quantities of energy given the relatively
small rate of growth of energy demand in California. Table 7, taken from
the 2017 and 2019 versions of the California ISO’s Annual Report on Mar-
ket Issues and Performance, shows the average load (total annual energy
demand divided by the number of hours in the year) and annual peak
load in the California ISO control area from 2013 to 2019.

The typical rate of growth of the annual demand for energy is sub-
stantially less volatile than the rate of growth in annual peak demand.
Moreover, total annual energy demand growth is negative for 2018 and
2019. Itis also likely to be negative for 2020 because of COVID-19. The vol-
atility of annual peak demand emphasizes the importance of allocating the
SFPFC energy using the actual hourly pattern of demand throughout the
quarter rather than a forecast of these magnitudes. This precommitment
ensures that during all hours of the year the total shortfall of suppliers pro-
ducing less than their total SFPFC commitments is equal to the total sur-
plus of suppliers producing more than their total SFPFC commitments

Table 7
Annual System Load in California ISO Control Area 2013-2019

Annual Total Average Annual Peak
Year Energy (GWh)  Load (MW) % Change Load (MW) % Change
2013 231,800 26,461 -1.0 45,097 -3.7
2014 231,610 26,440 -1 45,090 0
2015 231,495 26,426 0 46,519 3.2
2016 228,794 26,047 -14 46,232 -6
2017 227,749 26,002 0 50,116 8.4
2018 220,458 25,169 -3.2 46,427 -7.4
2019 214,955 24,541 -2.5 44,301 -4.6

Note: ISO = Independent System Operators, GWh = gigawatt-hours, MW = megawatts.
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for that hour, which means that final consumers have no net exposure
to short-term prices.

The most straightforward approach to running the quarterly SFPFC
auctions would be to run them as 12 independent auctions, one for
each future quarter at least 3 years in the future. However, to facilitate
a 3-year future revenue stream that could finance investment in new
generation capacity, the 12 quarterly auctions could be run simulta-
neously so that a potential new entrant could sell prespecified quanti-
ties of SFPFC energy in all 12 auctions or nothing at all. For example, the
new entrant could submit offers to sell the same amount of energy in all
auctions.

The appendix contains several examples using the four-period model
to illustrate how the true-up auctions would work. These examples
demonstrate that the SFPFC obligation of a supplier provides a strong
financial incentive to offer in at least as much energy at its marginal cost
as it expects will be its final SFPFC allocation for that hour of the compli-
ance period. If the realized value of the total system demand for the com-
pliance period is higher than expected and the supplier sells SFPFC energy
in the true-up auction, its final SFPFC allocation for each hour of compli-
ance period will be higher than its initial SFPFC allocation.

Failure to account for the possibility of selling energy in the true-up
auction can result in the supplier purchasing energy from the short-term
market at a price that is substantially higher than the marginal cost of
the generation capacity that the supplier does not offer into the short-
term market. In this sense, the SFPFC obligation provides a supplier
with a must-offer obligation for at least its final allocation of the SFPFC
energy after the true-up auction for that hour of the compliance period,
because the SFPFC mechanism requires the supplier to purchase any
shortfall in output from its generation resources relative to this hourly
SFPFC allocation at the hourly short-term price.

D. Incentives for Behavior by Intermittent Renewable
and Controllable Resources

Because all suppliers know that all energy consumed every hour of the
year is covered by a SFPFC in the current year and into the future, there
is a strong incentive for suppliers to find the least-cost mix of intermit-
tent and controllable resources to serve these hourly demands. To the
extent that there is concern that the generation resources available or
likely to be available in the future to meet demand are insufficient,
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features of the existing capacity-based RA mechanism can be retained
until system operators have sufficient confidence in this mechanism
leading to a reliable supply of energy. The firm capacity values from
the existing capacity-based long-term RA approach can be used to limit
the amount of SFPFC energy a supplier can sell.

The firm capacity value multiplied by number of hours in the year
would be the maximum amount of SFPFC energy that the unit owner
could sell in any given year. Therefore, a controllable thermal genera-
tion unit owner could sell significantly more SFPFC energy than it ex-
pects to produce annually, and an intermittent renewable resource owner
could sell significantly less SFPFC energy than it expects to produce annu-
ally. This upper bound on the amount of SFPFC energy any generation
unit could sell enforces cross-hedging between controllable in-state gener-
ation units and intermittent renewable resources. This mechanism uses
the firm capacity construct to limit forward market sales of energy by in-
dividual resource owners to ensure that it is physically feasible to serve de-
mand during all hours of the year.

Cross-hedging between a controllable resource and an intermittent
resource implies that in most years, the controllable resource owner
would be producing energy in a small number of hours of the year but
earning the difference between the price at which it sold the energy in
the SFPFC auction and the hourly short-term market price times the
hourly value of its SFPFC energy obligation for all the hours that it does
not produce energy. Intermittent renewables owners would typically
produce more than their SFPFC obligation in energy and sell any energy
produced beyond this quantity at the short-term price. In years with low
renewable output near their SFPRC obligations, controllable resource
owners would produce close to the hourly value of their SFPFC energy
obligation, thus making average short-term prices significantly higher.
However, aggregate retail demand would be shielded from these high
short-term prices because of their SFPFC holdings.

E. Assessment of the SFPFC Approach to Long-Term RA

This mechanism has several advantages relative to a capacity-based ap-
proach. There is no regulator-mandated aggregate capacity requirement.
Generation unit owners are allowed to decide both the total MW and the
mix of technologies to meet their SFPFC energy obligations. There is also
no prohibition on generation unit owners or retailers engaging in other
hedging arrangements outside of this mechanism. Specifically, a retailer
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could enter into a bilateral contract for energy with a generation unit owner
or other retailer to manage the short-term price and quantity risk associ-
ated with the difference between their actual hourly load shape and the
hourly values of their retail load obligation.

This mechanism provides a nudge to market participants to develop a
liquid market for these bilateral contract arrangements at horizons to
delivery similar to the SFPFC products. Instead of starting from the base-
line of no fixed-price forward contract coverage of system demand by re-
tailers, this mechanism starts with 100% coverage of system demand,
which retailers can unwind at their own risk.

This baseline level of SFPFC coverage of final demand is a more pru-
dent approach to long-term RA in a region such as California where the
vast majority of customers purchase their electricity according to a fixed
retail price or price schedule that does not vary with real-time system
conditions. A baseline 100% SFPFC coverage of final demand provides
the retailer with wholesale price certainty for virtually all its wholesale
energy purchases (except for the small true-up uncertainty described
above), which significantly limits the financial risk retailers face from
selling retail electricity at a fixed price and purchasing this energy from
a short-term wholesale market with increasingly volatile wholesale
prices.

An additional benefit of this mechanism is that the retail market reg-
ulator, in this case the CPUC, can use the purchase prices of SFPFCs to
set the wholesale price implicit in the regulated retail price over the time
horizon that the forward contract clears. This would provide retailers
with a strong incentive to reduce their average wholesale energy pro-
curement costs below this price through bilateral hedging arrangements,
storage investments, or demand response efforts.

There are several reasons why this mechanism should be a more cost-
effective approach to long-term RA than a capacity-based mechanism in
a zero marginal cost intermittent future. First, the sale of SFPFC energy
starting delivery 2 or more years in the future provides a revenue stream
that will significantly increase investor confidence in recovering the cost
of any investment in new generation capacity.

Second, because retailers are protected from high short-term prices by
total hourly SFPFC holdings equaling actual system demand, the offer
cap on the short-term market can be raised to increase the incentive for
all suppliers to produce as much energy as possible during stressed sys-
tem conditions. Third, the possibility of higher short-term price spikes
can finance investments in storage and load-shifting technologies and
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encourage active participation of final demand in the wholesale market,
further enhancing system reliability in a market with significant intermit-
tent renewable resources.

If SFPFC energy is sold for delivery in 4 years based on a proposed
generation unit, the regulator should require construction of the new
unit to begin within a prespecified number of months after the signing
date of the contract or require posting of a substantially larger amount of
collateral in the clearinghouse with the market operator. Otherwise, the
amount of SFPFC energy that this proposed unit sold would be auto-
matically liquidated in a subsequent SFPFC auction and a financial pen-
alty would be imposed on the developer. Other completion milestones
would have to be met at future dates to ensure the unit is able to provide
the amount of firm energy that it committed to provide in the SFPFC
contract sold. If any of these milestones were not met, the contract would
be liquidated.

F.  Empirical Evidence on the Performance of the SFPFC Mechanism

Although the SFPFC mechanism in the form described above does not
exist in any currently operating electricity supply industry, the long-
term RA mechanisms in Chile and Peru create the same set of incentives
for supplier behavior as the SFPFC mechanism by assigning system-
wide short-term price and quantity risk during all hours of the year to
suppliers. Both Chile and Peru operate a supplier-only, cost-based short-
term wholesale electricity market. The system operator employs regu-
lated variable cost estimates for each generation unit and an opportunity
cost of water for hydroelectric generation units to dispatch generation
units to meet demands throughout each country. All consumers or their
retailers are required to purchase full-requirements contracts from sup-
pliers to meet their retail load obligations. Suppliers financially settle im-
balances between the amount of energy they produce and the amount of
energy their customers consume under these full-requirements contracts.
Suppliers that produce more energy than their customers consume receive
payments from the suppliers that produce less energy than their custom-
ers consume."”

To see the equivalence of the incentives created for supplier behavior
under the market designs in Chile and Peru and the SFPFC mechanism,
let QR; equal the consumption of customers served by the supplier i and
PR; the quantity-weighted average price paid for full-requirements con-
tracts by customers served by supplier i. Let system demand equal QD,
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which is also equal to =Y, QR;, the sum of the consumption of all custom-
ers served by the N suppliers. The variable profit of supplier i is equal to

Profit; = PS x QS—C(QS)— (PS—PR)) x QR;
=PS x (QS-QR)) + PR; x QR;-C(QS),

)

which is identical to equation (1) presented earlier by setting QR; equal to
QC and PR; equal to PC. Moreover, because QD = >N QR;; all short-term
price and quantity risk is borne jointly by the N suppliers that have sold
full-requirements contracts.

The long-term RA mechanisms in Chile and Peru have delivered a re-
liable supply of electricity for at least the past 15 years in each country
in the face of significant hydroelectric energy supply uncertainty and
an increasing share of the energy consumed coming from intermittent
wind and solar generation units. This outcome has been achieved in two
countries with average annual load growth rates that are three to four
times that in regions in the United States with formal wholesale electricity
markets. Consequently, the experience of Chile and Peru provides a strong
argument in favor of the SFPFC mechanism for regions of the United
States with significant intermittent renewable energy goals.

VI. Final Comments

Wholesale market design is a process of continuous learning, adapta-
tion, and, hopefully, improvement. As the analyses of Sections II and
III have shown, a capacity-based long-term RA mechanism designed
for an industry based on dispatchable thermal generation units is poorly
suited to an industry with a significant share of energy coming from in-
termittent renewable generation capacity. These analyses demonstrate
that future supply shortfalls similar to those that occurred in California
during August 2020 and in Texas during February 2021 are likely in re-
gions with significant intermittent renewable generation capacity with-
out a change in the paradigm for ensuring long-term RA.

These analyses demonstrate that the major system reliability challenge
with a significant amount of renewable generation capacity changes, from
having sufficient generation capacity to meet annual system demand
peaks to the ability to meet the hourly net demands (system demand less
intermittent renewable output) for energy throughout the year. Particu-
larly in an electricity supply industry with a summer annual peak demand
and significant installed solar generation capacity, meeting daily system
demand peaks is relatively straightforward because demand peaks when
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there is significant solar energy production. The new focus on meeting net
demand peaks implies a system-wide focus on energy adequacy where in-
termittent renewable resources have a financial incentive to hedge their
short-term and production quantity risk with dispatchable generation re-
sources to cover these net demand peaks.

The standardized energy contracting approach to long-term RA de-
scribed in this paper delivers this outcome by allowing dispatchable re-
sources to sell significantly more energy in these standardized forward
contracts than they expect to produce to provide the revenue necessary
to keep sufficient amounts of this generation capacity available to meet
these hourly net demands throughout the year, even though these ther-
mal units operate at smaller annual average capacity factors. Intermit-
tent renewable resources are allowed to sell significantly less energy
in these standardized forward contracts than they expect to produce an-
nually to ensure that sufficient dispatchable generation capacity will be
available to meet the intermittent net demand peaks throughout the
year. The experience of Chile and Peru over the past 15 years, each of
which has a market design that creates the same set of incentives for sup-
plier behavior as the SFPFC mechanism, provides encouraging empiri-
cal evidence in favor of its adoption in regions with significant intermit-
tent renewable energy goals.

Appendix
I. Examples of Positive and Negative True-Up Auction Outcomes

A compliance auction would be run far in advance of the compliance pe-
riod to purchase 1,000 MWh of energy for the four time periods shown in
figure 14. Suppose this auction cleared at a price of $60/MWHh. Figure 15
shows the quantities sold in the auction for the three suppliers and their
hourly SFPFC obligations, assuming the pattern of aggregate demand in
figure 15 is realized for the four time periods. Figure 16 shows the hourly
SFPFC holdings of the four retailers for the four time periods. The total
demand across the four periods for each retailer is shown at the top of
figure 16.

Now suppose that the realized demand for the compliance period
turns out to be 10% higher in each of the four periods. The new demands
for the four periods are shown in figure A1l. This implies the need for
an ex post true-up auction for 100 MWh. Because demand is 10% higher
in each of the four periods, the shares that allocate this additional
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100 MWHh across four time periods to the four retailers are the same as
those used to allocate the original 1,000 MWh across the four time peri-
ods. The incremental allocations to each of the four retailers are shown in
figure A2 and the total realized demands for the four periods for each re-
tailer are shown at the top of the graph. The period-level obligations for
the incremental SFPFC energy purchased in the true-up auctions depend
on which suppliers sell this energy. If each firm sells 10% more SFPFC en-
ergy in the true-up auction and system demand increases by 10% in each
of the four periods, the period-level allocations of the additional SFPEC
energy for each supplier are shown in figure A3. In this example, we as-
sume that the true-up auction cleared at $70/MWh and the demand-
weighted average short-term price for the four periods is $55/MWh.

In addition to the variable profits they would earn from selling the en-
ergy they produce from their own generation units in the short-term
market, the three suppliers would receive the following difference pay-
ments to settle their SFPFC contract positions:

Firm 1 = ($60 — $55)300 + ($70 — $55)30
Firm 2 = ($60 — $55)200 + ($70 — $55)20
Firm 3 = ($60 — $55)500 + ($70 — $55)50.

Besides the variable profits they would earn from purchasing energy
from the short-term market and selling to their retail customers at the re-
tail price, the four retailers would pay the following difference payments:

Retailer 1 = ($60 — $55)1,000(110/1,100) + ($70 — $55)(110,/1,100)100
Retailer 2 = ($60 — $55)1,000(220,/1,100) + ($70 — $55)(220/1,100)100
Retailer 3 = ($60 — $55)1,000(330,/1,100) + ($70 — $55)(330,/1,100)100
Retailer 4 = ($60 — $55)1,000(440/1,100) + ($70 — $55)(440,/1,100)100.

Both the original and true-up aggregate SFPFC purchases are allocated
to individual retailers based on their actual share of total demand served
during the four demand periods.

If this 100 MWh total demand increase is instead shared equally be-
tween periods 1 and 2, period 1 demand would now be 150 MWh and
the period 2 demand would now be 250 MWh. Demand in periods 3 and
4 are unchanged from those in figure 14. In the final settlement, 150 MWh
of the SFPFCs would be allocated to retailers in period 1, 250 MWh in pe-
riod 2, 400 MWHh in period 3, and 300 MWh in period 4. Suppose that Re-
tailer 1 consumed the entire additional 100 MWh of energy during the
compliance period. Retailer 1 would now be assigned 2/11 = (200/1,100)
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of the above period-level values of SFPFCs as opposed to the values
shown in figure 16. Retailer 2, 3, and 4 would be also be assigned 2/11,
3/11, and 4/11, respectively, because their demand totals for the four pe-
riods did not change.

Suppose that the entire 100 MWh true-up auction quantity was all
sold by Firm 1 at a price of $65/MWh and as a result of a different pat-
tern of demands throughout the four periods, the demand-weighted av-
erage short-term price is $50/MWh. Now, in addition to the variable
profits they would earn from selling energy in the short-term market
produced by their generation units, the three suppliers would receive
the following difference payments to settle their SFPFC contract positions:

Firm 1 = ($60 — $50)300 + ($65 — $50)100
Firm 2 = ($60 — $50)200
Firm 3 = ($60 — $50)500.

Besides the variable profits they would earn from purchasing energy
from the short-term market to sell to their customers at the retail price,
the four retailers would pay for the following difference payments:

Retailer 1 = ($60 — $50)(1,000)(2/11) + ($65 — $50)100(2/11)
Retailer 2 = ($60 — $50)(1,000)(2/11) + ($65 — $50)100(2/11)
Retailer 3 = ($60 — $50)(1,000)(3/11) + ($65 — $50)100(3/11)
Retailer 4 = ($60 — $50)(1,000)(4/11) + ($65 — $50)100(4/11).

Again, both the original and true-up aggregate SFPFC purchases are al-
located to individual retailers based on their actual share of total de-
mand served during the four demand periods.

What price clears the true-up auction depends on the extent of com-
petition among suppliers to provide this additional energy. Clearly,
suppliers are extremely unlikely to offer to supply this energy below the
demand-weighted average short-term price over the compliance period be-
cause their overall profits would decline. However, if there are a substantial
number of suppliers willing to sell this additional SFPFC energy, the price is
unlikely to be significantly above the demand-weighted average short-
term price.

It is important to note that the lower the demand-weighted average
short-term price, the larger are the difference payments that suppliers
receive. This is another way of demonstrating that all suppliers have an
incentive to minimize the cost of meeting their SFPFC obligations by offer-
ing to supply this energy at their marginal cost of production in the short-
term market.
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The true-up auction for excess SFPFC energy operates in an analogous
manner. Suppose that demand is 10% lower in every period as shown in
figure A4. Suppose each firm buys back 10% of its SFPFC quantity in the
true-up auction. This yields the period-level SFPFC quantities for each
supplier in figure A5. If all retailers reduce their consumption in each
of the four periods by 10%, their hourly SFPFC allocations and their total
demands for the four periods are those shown in figure A6. Suppose that
the demand-weighted average short-term price is $45/MWh and true-
up auction clears at $40/MWh.

In addition to the variable profits they would earn from selling energy
produced by their generation units in the short-term market, the three
suppliers would now receive the following difference payments to settle
their SFPFC contract positions:

Firm 1 = ($60 — $45)300 — ($40 — $45)30
Firm 2 = ($60 — $45)200 — ($40 — $45)20
Firm 3 = ($60 — $45)500 — ($40 — $45)50.

Besides the variable profits they would earn from purchasing energy
from the short-term market to sell to at the retail price to their customers,
the four retailers would pay the following difference payments:

Retailer 1 = ($60 — $45)(90,/900)1,000 — ($40 — $45)(90,/900)100

Retailer 2 = ($60 — $45)(180,/900)1,000 — ($40 — $45)(180,/900)100
Retailer 3 = ($60 — $45)(270,/900)1,000 — ($40 — $45)(270,/900)100
Retailer 4 = ($60 — $45)(360,/900)1,000 — ($40 — $45)(360,/900)100.

Once again, the price that clears the true-up auction depends on the
extent of competition among suppliers to purchase the excess energy.
Clearly, suppliers are extremely unlikely to bid a price for this energy
above the demand-weighted average short-term price over the compli-
ance period. However, if there are a substantial number of suppliers
willing to buy this excess SFPFC energy, the auction price is unlikely to be
significantly below the demand-weighted average short-term price.

Now suppose that the entire 100 MWh true-up auction quantity was
purchased by Firm 1 at a price of $35/MWh and this 100 MWh reduc-
tion in demand across the four periods came entirely from period 3
and only from Retailer 3. Suppose that as a result of a different pattern
of demand throughout the day, the realized demand-weighted average
short-term price is $40/MWh. This implies the following realized sys-
tem load shares for the four periods: 1/9, 2/9, 3/9, and 3/9. The total
realized demands for each retailer are now 100, 200, 200, and 400, so
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portions of both aggregate SFPFC purchases are allocated to retailers us-
ing the following shares: 1/9,2/9,2/9, and 4/9.

Now, in addition to the variable profits they would earn from selling
the energy produced by their generation units in the short-term market,
the three suppliers would receive the following difference payments to
settle their SFPFC contract positions:

Firm 1 = ($60 — $40)300 — ($35 — $40)100
Firm 2 = ($60 — $40)200
Firm 3 = ($60 — $40)500.

Besides the variable profits they would earn from purchasing energy from
the short-term market to sell to their retail customers, the four retailers
would pay for the following difference payments:

Retailer 1 = ($60 — $40)(1,000)(100,/900) — ($35 — $40)100(100,/900)
Retailer 2 = ($60 — $40)(1,000)(200,/900) — ($35 — $40)100(200,/900)
Retailer 3 = ($60 — $40)(1,000)(200,/900) — ($35 — $40)100(200,/900)
Retailer 4 = ($60 — $40)(1,000)(400/900) — ($35 — $40)100(400/900).

The original and true-up aggregate SFPFC purchases are allocated to in-
dividual retailers based on their actual share of total demand served
during the four demand periods. More details on the SFPFC mechanism
and examples of true-up auctions are given in California Public Utilities
Commission (2021).

Daily Demand

Encegy (MWL) 110 + 220 + 440 + 330 = 1100 MWh

440 MWh

400 MWh +

300 MWh +

220 MWh
200 MWh +

110 MWh
100 MWh -

Period 1 Period 2 Period 3 Period 4

Fig. A1. Hourly system demands (10% higher). Color version available as an online
enhancement.



Four Retailers:
Retailer 1 holds 110 MWh

Retailer 2 holds 220 MWh
Retailer 3 holds 330 MWh
Retailer 4 holds 440 MWh
Total Amount Held by Four Retailers = 1100 MWh

Retailer 1 Retailer 2 Retailer 3 Retailer 4
Per Period Per Period Per Period Per Period
Forward Contract Obligation Forward Contract Obligation Forward Contract Obligation Forward Contract Obligation

MWh MWh MWh MWh 176

Fig. A2. Hourly forward contract quantities for four retailers (10% higher). Color version
available as an online enhancement.



Three Firms:
Firm 1 sells 300 MWh
Firm 2 sells 200 MWh
Firm 3 sells 500 MWh

Total Amount Sold by Three Firms = 1000 MWh

Firm 1
Per Period
Forward Contract Obligation
MWh
120
90
60
30

Fig. A3. Hourly forward contract quantities for three suppliers (10% higher). Color ver-

Firm 2
Per Period
Forward Contract Obligation
MWh
80
60
40
20

Time

sion available as an online enhancement.

Energy (MWh)

400 MWh -+

300 MWh 4

200 MWh

100 MWh +—

90 MWh

Firm 3
Per Period
Forward Contract Obligation
MWh 200
150

100

50

1 2 3 4

Daily Demand

90 + 180 + 360 + 270 = 900 MWh

180 MWh

Fig. A4. Hourly system demands (10% lower). Color version available as an online

enhancement.

Period 2
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Three Firms:
Firm 1 sells 270 MWh

Firm 2 sells 180 MWh
Firm 3 sells 450 MWh
Total Amount Sold by Three Firms = 900 MWh

Firm 1 Firm 2
Per Period Per Period
Forward Contract Obligation Forward Contract Obligation
MWh MWh MWh
108
o 81
| 72
54 54
45
36
27
H 18
1 Time Time

Firm 3
Per Period

Forward Contract Obligation

| 135

Fig. A5.
sion available as an online enhancement.

217

Time

Hourly forward contract quantities for three suppliers (10% lower). Color ver-
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Four Retailers:
Retailer 1 holds 90 MWh

Retailer 2 holds 180 MWh
Retailer 3 holds 270 MWh
Retailer 4 holds 360 MWh
Total Amount Held by Four Retailers = 900 MWh

Retailer 1 Retailer 2 Retailer 3 Retailer 4
Per Period Per Period Per Period Per Period
Forward Contract Obligation Forward Contract Obligation Forward Contract Obligation Forward Contract Obligation
MWh MWh MWh MWh
144
L bl
[ ]
=
n
-
= o=
i
ﬂ Time ﬂ Time Time — Time

2 3 4 1 2 3 4 1 2 3 4 1 2 E 4

Fig. A6. Hourly forward contract quantities for four retailers (10% lower). Color version
available as an online enhancement.

Endnotes

Author email address: Wolak (wolak@zia.stanford.edu). For acknowledgments, sources
of research support, and disclosure of the author’s material financial relationships, if any,
please see https:/ /www .nber.org/books-and-chapters/environmental-and-energy-policy-and
-economy-volume-3/long-term-resource-adequacy-wholesale-electricity-markets-significant
-intermittent-renewables.

1. McRae and Wolak (2019) demonstrate the difficulty of ensuring that supply equals
demand in the hydroelectric-dominated electricity supply industry in Colombia because
of El Nifio weather events. Wolak (2003) argues that a key causal factor in the California
electricity crisis of 200001 was the low levels of hydroelectric energy available in the Pa-
cific Northwest, which typically supplies a substantial amount of electricity to California
each year. Wolak (2009) demonstrates that the two supply shortfall periods in 2001 and
2003 in the New Zealand wholesale electricity market were also due in large part to
low water availability.

2. See http:/ /www.ercot.com/content/wcm/key_documents_lists /225373 /Urgent_Board
_of_Directors_Meeting 2-24-2021.pdf.

3. The number of generation units available is a binomial random variable with prob-
ability p = .9 and with number of trials N = the number of generation units. The probabil-
ity of meeting the demand peak is the probability the available capacity is greater than or
equal to the peak demand.

4. The annual average hourly capacity factor for a generation technology first computes
the total production by that technology during each hour of the year divided the total of
installed capacity of that technology during that hour. It then computes the annual aver-
age of these hourly values over all hours of the year.
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5. For a map of all North American Interconnections, see https://www.eia.gov /electricity
/data/eia411/images/nerc_old.jpg.

6. Wood, Wollenberg, and Shebleé (2013) provide an accessible introduction to Kirchoff’s
laws and transmission and distribution grid operation.

7. The monthly firm capacity figures for 2020 are listed in the file NetQualifying
CapacityList-2020.xls, available at http:/ /www.caiso.com/planning/Pages/Reliability
Requirements/Default.aspx.

8. There are limited direct current interconnections with neighboring states that sell
limited amounts of electricity to ERCOT or export energy from ERCOT.

9. See https://data.census.gov/cedsci/table?q=ACSDT1Y2019.B25040.

10. See http://www.ercot.com/content/wcm/key_documents_lists /225373 /Urgent
_Board_of_Directors_Meeting_2-24-2021.pdf.

11. See https:/ /www.bloomberg.com/news/articles /2021-02-15/ texas-power-retailers
-in-face-of-freeze-please-leave-us.

12. Ibid.

13. See https:/ /www.houstonchronicle.com/politics / texas/article/ Simple-paperwork
-blunder-Texans-cold-winter-storm-16032163.php.

14. See https:/ /www.spglobal.com/platts/en/market-insights /blogs/electric-power
/041521 -texas-electricity-market-february-freeze-power-outages.

15. See https:/ /www.eia.gov/todayinenergy/detail. php?id=46896.

16. See https:/ /www.houstonchronicle.com/ politics/texas/article / Simple-paperwork
-blunder-Texans-cold-winter-storm-16032163.php.

17. See https:/ /www.texasmonthly.com /news-politics / texas-blackouts-natural-gas.

18. CV = (Standard Deviation)/(Mean).

19. See Section 3.2 of Wolak (2021) for more details on this settlement mechanism.
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