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Abstract

This paper formulates and estimates a household-level, billing-cycle water demand
model under increasing block prices that accounts for the impact of monthly weather
variation, the amount of vegetation on the household’s property, and customer-level
heterogeneity in demand due to household demographics. The model utilizes US Cen-
sus data on the distribution of household demographics in the utility’s service territory
to recover the impact of these factors on water demand. An index of the amount of
vegetation on the household’s property is obtained from NASA satellite data. The
household-level demand models are used to compute the distribution of utility-level
water demand and revenues for any possible price schedule. It can be used to design
nonlinear pricing plans that achieve competing revenue or water conservation goals,
which is crucial for water utilities to manage increasingly uncertain water availability
yet still remain financially viable. Knowledge of how these demands differ across cus-
tomers based on observable household characteristics can allow the utility to reduce the
utility-wide revenue or sales risk it faces for any pricing plan. Knowledge of how the
structure of demand varies across customers can be used to design personalized (based
on observable household demographic characteristics) increasing block price schedules
to further reduce the risk the utility faces on a system-wide basis. For the utilities con-
sidered, knowledge of the customer-level demographics that predict demand differences
across households reduces the uncertainty in the utility’s system-wide revenues from
22 to 84 percent. Further reductions in the uncertainty in the utility’s system-wide
revenues, in the range of 10 to 79 percent, are possible by re-designing the utility’s
nonlinear price schedules to minimize the revenue risk it faces given the distribution
of household-level demand in its service territory.
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1 Introduction

There is a growing need for urban water utilities to manage periods with limited water sup-
plies, particularly in arid parts of the United States. Because more that 85 percent of the
total cost of a typical urban water utility does not vary with the volume of water produced,
this has led to an increasing frequency of revenue shortfalls for these entities. According to
the California Public Utilities Commission (CPUC), over the past 15 years as high as 50
percent of the largest water utilities it regulates have annual revenue shortfalls as large as
20 percent of their annual revenue requirement. These revenue shortfalls have resulted in a
far greater use of ex post revenue adjustment mechanisms that increase water prices after
periods with limited water availability to recover these revenue shortfalls. This has led to
an increasing temporal mismatch between the retail price consumers are charged and their

need to reduce to water consumption ]

Despite rapidly growing populations in the western states over the past 30 years, there has
been no major water storage or delivery infrastructure investment west of the Continental
Divide since the early 1970s. For example, the population of California in 1970, around
the time the State Water Project was completed, was roughly half of the current value
of 38.9 million. This hiatus in water infrastructure investments is partially responsible for

the increasing frequency of shortfalls in water availability to urban water utilities in the West.

This set of circumstances suggests two possible approaches to meet the West’s future wa-
ter demand: (1) manage existing water resources, primarily through pricing, or (2) build
and pay for additional water storage and/or transportation infrastructure. Both approaches
argue for a significantly enhanced understanding of the customer-level demand for water.
This argument is strengthened by the fact that nonlinear pricing is the standard approach
used by water utilities to balance the competing goals of managing limited water resources
and achieving sufficient revenues to recover their costs. Customers typically face schedules
where the price charged for each additional unit, the marginal price, rises with the customer’s
monthly consumption. The marginal price is fixed for a block or range of values of monthly
consumption, but it increases across these blocks with increases in the value of monthly con-
sumption. For this reason these nonlinear price schedules are called increasing block price

schedules.

IFor example, the Water Revenue Adjustment Mechanism (WRAM) set by CPUC to recover past revenue
shortfalls has temporarily increased future monthly water bills for the same level of consumption by more
than 40%.



The form of the increasing block price schedule set by the utility impacts how much water
each customer purchases and the revenues the utility receives from that customer. The form
of the nonlinear price schedule also impacts the amount of uncertainty the utility faces in the
quantity of water it sells and the revenues it receives from each customer. This uncertainty
in customer-level water sales and revenues to the utility is aggregated across customers to
create uncertainty in the utility-level water sales and revenues. If a utility can accurately
predict the customer-level demand for water for any possible nonlinear price schedule it can
design increasing block price schedules to achieve any conservation or revenue goal while
minimizing utility-level water sales or revenue risk. Increased information about the distri-
bution of customer-level demand directly translates into reduced water sales and revenue

risk associated with any rate design goal.

This paper formulates and estimates a household-level demand model for water under increas-
ing block prices that accounts for the impact of weather variation within the household’s
billing cycle and customer-level heterogeneity in demand due to observable demographic
characteristics and other unobserved factors that differ across customers. This model is
applied to billing cycle level data from two urban water utilities, one serving Cobb (Cobb)
County, Georgia and the other serving the Valley of the Moon (VoM) in Napa County, Cal-

ifornia.

Our model accounts for the fact that the demand for water, electricity, and natural gas is
derived from the household’s demand for services these products provide and the relationship
between the demand for these services and the consumption water, electricity or natural gas
is uncertain. For example, in the case of water, the customer may have a demand for drink-
ing, bathing, and other household activities, but it is typically impossible for the customer
to control precisely their consumption of water. The household might run the tap for an
uncertain length of time before filling their glass for drinking, run the shower until the water
becomes warm enough to shower, or stay in the shower longer than normal. Similar logic
applies to the case of electricity. How much electricity many appliances consume depends
on temperature conditions. The household may forget to turn off the lights or the television

when they leave a room.

Previous models of demand under nonlinear pricing such as Hewitt and Hanemann| (1995)
and [Olmstead et al. (2007) account for this uncertainty in consumption of water by intro-
ducing an error term that is unobservable to the econometrician and customer that impacts

their consumption. Specifically, these models assume that the household chooses where



to consume along their nonlinear budget set, but this "perception error” can subsequently
cause them to consume at any point along the customer’s nonlinear budget set. Our model
of consumer demand takes a different approach to modeling this uncertainty between the
demand for water services and the customer’s consumption of water by assuming that the
household knows that an error term will be realized during the billing cycle that impacts
their consumption of water. The household optimizes against the realization of this error
by choosing to consume according to the price step on the nonlinear price schedule that
maximizes the expected utility associated the distribution of the error subsequently realized
during the billing cycle. We estimate both models of consumer demand under nonlinear
pricing and find that our model yields a statistically superior description of the joint density
of billing cycle level consumption levels across customers and time using a Vuong| (1989)

non-nested hypothesis test.

There is some debate among economists whether customers understand and are able to re-
spond to nonlinear prices. [Ito| (2014)) and Borenstein| (2009) argue that consumers respond
to the average price they face rather than to the nonlinear price schedule. We use the |Vuong
(1989) non-nested hypothesis test to compare our model of household-level demand with
nonlinear pricing to four competing models of household-level demand that embody alter-
native price measures that that household responds to. Two of the alternative models of
demand are based the assumption that the household’s demand is a function of the average
price. For both utilities considered, the non-nested hypothesis tests find that our model of
water demand with nonlinear pricing provides a statistically superior description of the ob-
served pattern of the household-level demand relative to each of the four alternative models,
with the exception of one average-price model for VoM, where the null hypothesis of an equal

average log-likelihood value cannot be rejected.

Our model can be used to construct an estimate of the distribution (because of unobservable
demographic factors and other unobservables) of each customer’s monthly demand and total
amount paid for water for any arbitrary nonlinear price schedule. Combined with data on
the distribution on observable customer-level heterogeneity in the utility’s service territory,
these household-level demand models can be used to compute the distribution of aggregate
water demand for any possible price schedule. This process also yields an estimate of the
distribution of total utility-level revenues for any arbitrary nonlinear price schedule or set of
nonlinear price schedules, which implies that the modeling results can be used to measure
both the household-level and aggregate willingness to pay for a proposed water infrastruc-

ture investment. Specifically, it can be used to determine if there exists a nonlinear price



schedule consistent with the utility’s water pricing goals that recovers sufficient revenues
to recover the cost of a given water infrastructure investment. In general, the estimated
household-level water demand model can be used by the utility to design nonlinear prices

for water to achieve a wide range of system-wide policy goals.

Our model assumes that a household’s water demand depends on the nonlinear price sched-
ule, the characteristics of household (such as household income, the size of the dwelling, size
of the property, and number of adults living in the dwelling), weather conditions (such as
average daily temperature and rainfall) during the customer’s billing cycle, and a measure
of the amount of outdoor vegetation on the customer’s property. The United States (US)
Bureau of Census Public Use Microdata Sample (PUMS) of American Community Survey
provides data on the distribution of household demographic characteristics in each United
States Postal Service (USPS) Zip Code. The National Oceanic and Atmospheric Administra-
tion (NOAA) provides data on daily weather conditions in that Zip Code during the billing
cycle. Information on the amount of outdoor vegetation for each customer is obtained from
satellite data compiled by the National Atmospheric Information Administration (NASA)

on a bi-monthly basis.

Several computations are performed using the model to assess the impact of resolving un-
certainty about customer-level demand and the distribution of these demands throughout
utility’s service territory on the system-wide sales and revenue uncertainty faced by the util-
ity. The difference in the system-wide revenue risk between a scenario that assumes the
utility only knows the prior distribution of demographic characteristics in the household’s
zip code and the scenario that assumes the utility knows each customer’s demographic char-
acteristics provides a metric for assessing the revenues and sales risk reduction benefits to

the utility from collecting demographic information from each of its customers.

Counterfactual nonlinear price schedules are computed that yield no more than the same
expected system-wide water sales and at least as much system-wide revenues as the utility’s
existing price schedules, but also minimize the uncertainty in the utility’s annual revenues
from water sales. Price schedules that reduce system-wide water consumption by 25 per-
cent with a 95 percent probability while still obtaining at least a much expected sales, are
also computed. These counterfactual price schedules are constructed under the assumption
that the utility knows the demographic characteristics for each household. The demographic
characteristics are assigned based on the posterior distribution of demographics in the house-

hold’s zip code and the household’s observed vector of billing cycle-level water consumption.



These experiments demonstrate several sources of economic benefits to the utility from hav-
ing more detailed knowledge of individual customers. First, knowledge of the customer-level
demand can be used by the utility to design increasing block pricing plans that achieve
any revenue or sales goals with less revenue or sales risk. Second, knowledge of how these
demands differ across customers based on observable demographic characteristics can allow
the utility to significantly reduce the utility-wide revenue or water sales risk it faces for any
pricing plan. Third, knowledge of how the structure of demand varies across customers can
be used to design personalized (based on observable household demographic characteristics)
increasing block price schedules to further reduce the risk the utility faces on a system-wide
basiSE| Finally, with detailed knowledge of how demands differ across customers based on
observable demographic characteristics, the utility can more accurately assess the likely im-
pact to water sales and revenue from changes in the number and types of customers in their

service territory.

For the two utilities considered, knowledge of the customer-level demographics that predict
demand differences across households reduced the uncertainty in the utility’s system-wide
revenues by 22 and 84 percent. Further reductions in the uncertainty in the utility’s system-
wide revenues, in the range of 10 to 79 percent, are possible by re-designing the utility’s
nonlinear price schedules to minimize the revenue risk it faces given the distribution of
household-level demand in its service territory. This household-level demand information is
also particularly important for assessing the economic benefits of proposed water infrastruc-
ture projects and designing the price schedules necessary raise the revenue needed to pay for

them with the least amount of water sales or revenue risk to the utility.

The remainder of the paper proceeds as follows. Section [2| discusses the design of nonlinear
pricing plans. Section [3| describes the datasets used to estimate the demand model. Section
[], [5 [6] present the econometric model of demand, the estimation results, and the specification
tests performed, respectively. Section [7] describes how the model can be used to estimate the
distribution of household-level and system-wide water sales and revenues. Section [8| presents

the counterfactual experiments performed using the model results. Section [J] concludes.

2Because it is relatively straightforward for the utility to prevent resale of residential water service, utili-
ties can set different increasing block price schedules for each customer based on its observable demographic
characteristics.



2 Rate Design with Nonlinear Pricing

A major rationale for increasing block pricing by water utilities is that this form of nonlinear
pricing balances two competing public policy goals. The first is to provide the “essential”
amount of water a household needs for drinking, cooking, bathing, and other indoor use at
a price that is affordable for virtually all households in the utility’s service territory. The
second goal is to provide a financial incentive for households using more than the “essential”
amount to reduce their demand for water. By this logic, the higher-priced steps in the in-
creasing block price schedule beyond the initial baseline or essential consumption level are
designed to discourage less essential water consumption. For example, the second price step
might be intended for the demand to fill the household’s swimming pool. The third price
step might be intended for the demand for watering the household’s outdoor trees, bushes,
and shrubs. The fourth price step might be intended for the demand for watering the house-

hold’s lawn.

Another argument in favor of increasing block pricing of water is that it recovers an increas-
ing amount of the utility’s revenue from high demand customers, which are also likely to
be the high income customers. Because higher income consumers typically consume more
water, the highest marginal price they pay is typically greater than the highest marginal
price low income consumers pay. For this reason, increasing block pricing implies that high
income consumers that purchase more water pay a higher average price (total monthly pay-
ments divided by total monthly consumption) for their water consumption than low income

consuimers.

Increasing block pricing can also create revenue adequacy challenges for the water utility if
the utility makes the length of the baseline level of demand too large. High demand house-
holds might consume along the baseline marginal price step as opposed to consuming at a
higher marginal price step. Figure [1]illustrates case with Dy (p), the demand curve for low-
demand consumers, and Dy (p), the demand curve for high income consumers. Both curves
intersect the increasing block price schedule on the first price block, which raises significantly
less revenue for the utility than would be the case if Dy(p) intersected the price schedule on
the higher-priced block. If the first block of the price schedule is too short, this can impose
an excessive financial burden on low-demand, low-income consumers by charging them the
marginal price intended for high demand consumers. Figure [2| illustrates this case where

both demand curves intersect the increasing block price schedule on the higher-priced block.



From the perspective of achieving enough revenues to recover the utility’s cost and while
selling no more than a certain amount of water to all customers, the design of a nonlinear
price schedule amounts to choosing the length of each step to separate customers into dis-
tinct groups based on their willingness to pay for water. Moreover, if the utility has some
uncertainty about the location and shape of each customer’s demand, then reducing this
uncertainty could help the utility determine where to set the baseline demand level, ¢p,
shown in Figure . This figure shows the range of possible uncertainty (from the perspec-
tive of the utility) in Dy(p) and Dg(p). This is indicated by the dotted lines to the left
and right of each demand curve. Note that gz has been chosen so that regardless of the
realization of Dy (p) and Dy(p), each type of customer will continue to consume along the
same step of the increasing block price schedule. Choosing the value of g in this manner
limits the amount of revenue variability facing the utility due to its uncertainty about the
realized values of Dy (p) and Dg(p). The second part of the increasing block pricing design
process must choose the levels of the first marginal price and second higher marginal price to
recover sufficient revenues to cover the utility’s costs, while still achieving the goal of limiting

the economic burden placed on low-income consumers to purchase their essential water needs.

If the utility is able to sort households into different categories based on observable demo-
graphic characteristics, then is possible to assign different increasing block price schedules to
different households based on their observable demographic characteristics. In this case, the
utility would like to achieve the outcome in Figure 3| for each set of observable demographic

characteristics that predict differences in the form of the demand.

One possible set of counterfactual pricing experiments would use the estimated household-
level demand model to determine the extent to which it is possible for the utility to re-design
its increasing block price schedule to achieve at least as much expected revenue and expected
water sales no larger than it does under the current rate schedule while facing less risk to
its total revenues. A second set of counterfactual pricing experiments could set separate
increasing block prices schedules for households with different observable demographic char-
acteristics to achieve at least as much expected revenue and no larger expected water sales
than with the current increasing block price schedules used by the utility while facing the
utility with less risk to its total revenues. Both sets of counterfactual pricing experiments
demonstrate that if a utility has more information about the demand for water of individual
customers, it can significantly reduce the revenue or sales risk it faces in meeting a set of

pricing goals.



3 Data Used in Analysis

Four datasets are used to estimate the customer-level demand model for each utility ser-
vice territory. The first is billing cycle-level monthly water consumption data for a sample of
households for at least one year in duration. The second dataset is composed of daily weather
variables at the Zip Code level obtained from the National Oceanic and Atmospheric Ad-
ministration (NOAA) for the utility’s service territory. The third dataset is the distribution
of household-level demographic characteristics within each Zip Code in the utility’s service
territory obtained from the US Bureau of the Census. The fourth dataset is composed of the
value of the Normalized Vegetation Difference Index (NDVI) compiled by NASA for each
household’s property.

Monthly household-level water consumption is available from two utilities at the billing
cycle-level, along with the customer’s zip code, the form of the nonlinear price schedule
faced by household, and other information necessary to compute customer’s monthly water
bill. Although utilities typically bill their customers on a monthly basis, customers receive
their bills at different times during the month. The time between consecutive billing dates
is called the customer’s billing cycle and it depends on when the meter reader shows up at
the customer’s premises to read the meter each month. For example, one customer might
be billed on the third day of every month, whereas another customer might be billed on a

twentieth day of the month.

Having data available on each customer’s billing cycle level is important for accurately mod-
eling the impact of weather conditions on a household’s demand for water. In terms of the
above example, it might be the case that first two weeks of July are extremely hot so the
water demand is extremely high, whereas the last two weeks of July are mild so that water
demand is significantly lower. The customer with a billing cycle that starts on the third day
of the month will have much higher weather-related demand than customer whose billing
cycle begins on the 20th day of the month. Only by knowing the customer’s billing cycle
is it possible to properly account for differences across customers in their weather-related

demand for water.

The NOAA provides daily measures of rainfall and the maximum daily temperature at the
Zip Code level for each utility service territory. The average value of the maximum daily
temperature is computed as the average of the daily maximum temperature across all days in

the billing cycle. The total amount of rainfall in that Zip Code during the billing cycle is also



computed from this data. The inter-quartile range of the maximum daily temperatures and

inter-quartile range of daily rainfall in the zip code during the billing cycle are also compiled.rf]

The distributions of household-level demographic variables for each Zip Code in each util-
ity’s service territory are obtained from the US Bureau of Census Public Use Microdata
Sample (PUMS) of American Community Survey. The demographic characteristics for each
household surveyed in each Public Use Microdata Area (PUMA) are compiled along with
the sampling weight for that household. These PUMAs can be matched to zip codes so that
a distribution of household-level demographic variables in the Zip Code is available for all

Zip Codes in the service territory.

The NDVI data is compiled by NASA from satellite data taken from the using NOAA’s
Advanced Very High Resolution Radiometer (AVHRR). An algorithm is applied to the wave-
lengths and intensity of visible and near-infrared light reflected by the land surface back up
into space to quantify the concentrations of green leaf vegetation for 30 meter by 30 meter
quadrants of the earth’s surface. The NDVI lies on the interval [-1,1], with higher values
indicating more green vegetation. Values close to -1 correspond to water, whereas values
close to zero (-0.1 to 0.1) correspond to rock, sand, or snow. Small positive values, generally
between 0.2 and 0.4, represent shrub and grassland, and values close to 1 indicate temperate

and tropical rainforests.

Household-level, billing-cycle data is available from the VoM and Cobb water utilities. Daily
weather data has also been compiled for the time period that the customer-level billing
cycle data is available for each utility service territory. The Zip Code-level distribution of
household demographic data has also been compiled for the time period that the customer-
level billing cycle data is available for each utility service territory. The NDVI data is
available on a bi-monthly basis for each household in both utility service territories. All
nominal prices are converted to 2012 dollars using the Federal Reserve Economic Database
Gross Domestic Product (GDP) deflator from St Louis Federal Resource Bank. [

3The inter-quartile range is the difference between the 75'"" percentile of the daily variables in the billing
cycle and 25" percentile of this same distribution.
4Data available from https://research.stlouisfed.org/fred2/series/ GDPDEF



4 Econometric Model

This section describes the specification of two econometric models of the billing cycle-level
and household-level water demand under increasing block prices that account for the weather
facing that household during its billing cycle, differences in demographic characteristics
across households, differences in the NDVI value for the property over time and across
households, and uncertainty in the household’s demand for water services and its consump-

tion of water.

The first model assumes that the household knows that it will be subject to a consumption
shock during the billing cycle, and therefore the household chooses to consume along the
price step the maximizes its expected utility given the distribution of this consumption shock.
The second model is based on Hewitt and Hanemann| (1995) model of demand under nonlin-
ear pricing where a perception shock is realized after the household chooses an unobserved
water service consumption level and this can lead the household to consume water at any

point along its nonlinear budget set. This perception shock is unobserved and unanticipated

by the household.

For both econometric models, we derive the joint density of all billing cycle-level consumption
choices for each household during the sample period conditional on the nonlinear price sched-
ule the household faces, its demographic characteristics, the value of NDVI on its property,
and the temperature and rainfall distributions it was exposed each billing cycle during the
sample period. Because the demographic characteristics of each household are unobserved,
to arrive at the likelihood function used to estimate the parameters of both demand mod-
els, the conditional distribution of the household’s monthly billing cycle-level consumption
choices given its unobserved demographic characteristics is integrated with respect to the
distribution of demographic characteristics in the Zip Code that contains that household.
This yields a likelihood function that depends on observable data—the household’s vector
of monthly water consumption choices, the values of the household’s property vegetation
index, the vector of billing cycle-level monthly weather variables and the distribution of

demographic characteristics for that household’s Zip Code.

4.1 Water Demand with Nonlinear Pricing

Both models deal with the fact that consumers can only imperfectly predict which step of the
increasing block price schedule they will end up on during their billing cycle because of the

uncertain relationship between the demand for water utility services and their consumption

10



of water during the billing cycle. Accounting for this fact is necessary for the household-level
demand model to match the distribution of actual water consumption across households and
billing cycles. Similar to other studies of water and electricity demand under nonlinear pric-
ing, this distribution does not show bunching at the endpoints of steps of the nonlinear price
schedule[’| The alternative demand model under nonlinear pricing presented in Section
that only allows for unobserved heterogeneity in consumer preferences yields a distribution
of billing cycle-level consumption that bunches at the endpoints of the steps of the nonlinear

price schedule [

The first model assumes that consumers follow a two-step process that explicitly recognizes
this uncertain relationship between the demand for water services and water consumption
when choosing to consume along a nonlinear price schedule. At the start of the billing cycle,
the household is assumed to choose the price step, p; (i = 1,2, ..., N), that yields the highest
expected utility given the distribution of demand shocks within the billing cycle. Through-
out the billing cycle, the household consumes electricity assuming it will end up on that
marginal price step. However, during the month the household experiences demand shocks
which may cause it to end up on a different price step from the one that it found optimal at

the beginning of the month.

It is virtually impossible for a household to manage its water consumption within the billing
cycle with sufficient precision to always end up on its expected utility-maximizing price
step. Uncertainty in water consumption during the billing cycle may move the household’s
marginal price from one price tier to another price tier. As discussed earlier, virtually all
household uses of water involve uncertainty in the actual amount of water consumed for the
water services demanded by the household. A household member demands water services
such as taking bath or shower, filling their swimming pool, washing their car, or watering
their plants or lawn. Despite the individual’s best intentions to use only a certain amount
of water, each water service demand has technological uncertainty in the exact amount of
water consumed. For example, running water for a hot shower on a cold day takes longer
than on a warm day and therefore uses more water. For this reason, we have the stochastic
unobservable, €, as the demand shock to account for uncertainty in actual amount of water

consumed by the household relative to their intended water service consumption level.

5See Figures [11| and [15| for a plot of these distributions for VoM and Cobb.

6The model of household-level electricity demand under nonlinear pricing presented in Reiss and White
(2005) only allows for unobserved heterogeneity. Their analysis avoids this issue the authors only observe
the household’s annual demand for electricity, which is sum of the household’s billing cycle-level demands
for the year.

11



Virtual income is an important concept in modeling demand under increasing block pricing.
It accounts for the fact that initial units of consumption in the billing cycle take place at
a lower marginal price and accounting for this fact in consumer’s choice problem yields the
same utility-maximizing choice as assuming the customer has this virtual income and all
consumption takes place at a higher marginal price. Let the price steps of the increasing
block pricing be defined from lowest to the highest p; < ps < ... < py and let ¢; equal the
endpoint of price step p;. Let F'C' equals the household’s fixed charge for the billing cycle.
Define dj, as the difference between the cost of consumption level w (in the kth block of the
increasing block price schedule) when all units are purchased at price p, the marginal price
for this block, and the actual cost of purchasing w under increasing the block price schedule,
so that d, = —FC — Z;:ll (pj — pj+1)q;- For example, if the household is purchasing along
the first price tier, then d; = —F'C and if the household is purchasing along the second price
tier, then dy = —FC—(p1—p2)q1. A household with vector of demographic characteristics,
A, purchasing along the kth price tier has virtual income, Vj,(A) = I(A) + di, where I(A)
is the household’s actual income. We write income, I(A), as a function of the vector of
demographic characteristics to denote the fact that monthly income is one of the elements
of A, the vector demographic characteristics obtained from PUMS data. Nonlinear pricing
creates an income effect for consumers that face marginal prices higher than first marginal

price during the billing cycle.

Define V (py, dy, Ai, Zi, Gi, €, ) + i to be the conditional indirect utility of the household
1 being on price step k, where dj, is defined as above to illustrate virtual income; A; is the
household i’s demographic characteristics; Z; is the vector of weather variables faced by
household i; G; is the value of the NDVTI index for household i. Note that Z; can change over
time for the same household. For now we will skip the subscript ¢ for time for notational
convenience. Assume the ¢; is sum of all demand shocks during the billing cycle and is
realized after the household makes its price step choice for the billing cycle. We assume that
N, is a Type I extreme value random variable that is in the indirect utility associated with
price step k. This random variable is assumed to be observed by the household, but not the

researcher. This utility function is parameterized by the vector (.

From this conditional (on the price step chosen) indirect utility function V' (py, di., A;, Zi, Gi, €;, B)+
Nk, we can derive the ex post demand for electricity during the billing cycle conditional on
price step k being the marginal price step during the billing cycle. We can then calculate the
expected utility value conditional on choosing price step k as E., [V (p,d, A;, Z;, Gi, €, B) | pr]+

12



ne where E,(-) means that expectation is taken with respect to the distribution of ¢;. Note
that here we don’t have p, and d; anymore because the realization of ¢; might move the
consumers to a different price step other than price step k. Then we are able to decide the
probability of the consumer choosing each price tier based on the expected utility values
and the distribution of 7. With the added demand shock ¢;, we completely characterize the
water demand for household facing a nonlinaer price schedule with known values of A;, Z;,
and G;.

Because of the demand uncertainty that household faces during the billing cycle, our model
assumes that at the beginning of the model, the household chooses the price tier that it
will end the month on to maximize the expected utility associated with consuming at the
marginal price during the month, rather than the usual approach of choosing the quantity
to consume during the billing cycle. The household’s realized demand accounts for the fact
that it faces an increasing block price schedule, because of the virtual income that house-
hold receives from consuming at that price tier during the month in the expression for total
expenditure for the billing cycle. Because of the demand uncertainty faced by the household
during the month, it can end up on a different price tier from the one it expected to consume
along at the end of the month. Because the customer does not see its consumption for the
billing cycle until it receives its bill for that month, it is unable to learn which price on the

increasing block price schedule it ultimately ends up on.

We specify the details of the computation of the log-likelihood function once we specify the
functional form for V(pg, dx, Ai, Zi, Gi, €;, ) and the distribution of ¢;. With this informa-
tion we can derive the conditional density of the household’s observed water consumption
fwi| Py, As, Zi, Gy, B), which is the conditional (on P;, A;, Z;, and G}) likelihood function for

a single observation of monthly billing cycle-level consumption for household i.

4.2 Log-Likelihood Function

Let the subscript ¢ denote the value of a variable for billing cycle t and T'(i) equal the
number of monthly billing cycle observations for household i in the sample and N is the
total number of households in the sample. Let W; = (w1, wsa,. .., wirq)) equal the T'()
dimensional vector of realized monthly water consumption observations for household i. Let
W = (W],Wy,...,W})" equal the vector of the N vectors of monthly water consumption

observations for all households in the sample. The first step in computing the likelihood

13



function for the econometric model is to compute the joint density of W; for each household
in the sample conditional on the household’s demographic characteristics and the T'(7) real-
izations of monthly weather conditions that they faced. In terms of the above notation, this

joint density takes the form:

T()
Hf(w'itlpitJATLJZ’itJGit7/6) (1)
t=1

where P;; denotes the overall price schedule composed of marginal prices, (p1,pa,...,PN),
corresponding quantity cutoffs, (¢1, g2, ..., gv—10 and monthly fixed charge, F'C'. The PUMS
data from American Community Survey can be used to compute the probability density
functions for the vector of demographic characteristics for each Zip Code in the utility’s
service territory. This dataset provides the sampling weights for each household in the
American Consumer Survey and the vector of their demographic characteristics for each
5-digit Zip Code in the utility’s service territory. Let (wt(i,n), A,) forn =1,..., L(i) equal
the values of these sampling weights and associated vector of demographic characteristics for
each sampled household in the Zip Code that contains household i. In terms of this notation,

the log-likelihood function for single customer is equal to:

T(i)

(wil) = ln[zwtzn g (wal P, An, Zut, G, B)| 2)

=1

Summing over all N households in the sample yields log-likelihood function for the entire

sample:
N T(3)
L(W|B) = Z (WilB) = Zln [ZUJt LN H (wit‘Pit,AmZit,Git,ﬁ)] (3)
i=1
Note that the joint distribution of (w1, wsa, . . ., wire;) is integrated with respect to density of

the vector of demographic characteristics, A,, rather than the density of each w;; individually,
to account for the persistence in household i’s billing cycle level demand over time. If the
consumption of household i is unexpectedly high in billing cycle t relative to what would
be predicted based on observable characteristics of this household, then it is likely that its
consumption would be unexpectedly high in all other billing cycles. Integrating with respect

to the density of A, as is done in equation [3|is consistent with that logic.
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4.3 Functional Forms

In order to implement the model empirically, it is necessary to choose functional forms for
the household’s indirect utility function, V(p,d, A;, Z;, G;, €;, ), which yields the realized
water demand function for the billing cycle, g(A;, Z;, Gy, pr,dx), and density function for
observed consumption in the billing cycle, f(w;|P;, A;, Z;, G;, ). Because the distribution of
monthly water consumption across households for the same month and the distribution for
the same household over time are both positively skewed in the sense that there are many
observations just below mean, but a few observations far above the mean, the appropriate

variable to model is the logarithm of the household’s monthly demand for water.

Assume the conditional indirect utility of the household being on price step k for household

1 is equal to:

V(pr, di €, B) + n =
pp " (A 4 dy)' 5

—exp(Bi'Ai + B2 Z; + 3G + €;) 1— (A, ) 1— p(A;, Gy

+ e (4)

where a(A,G) = —exp(A'By1 + GfB5) and p(A,G) = —exp(A'Bs + GB;). Define g =
(B1, 55, B%, By, B, Bg, B5)' as the vector of parameters of the demand/utility function. We
assume that €, sum of all demand shocks during the billing cycle, is a N(0,0?) random
variable that is realized after the household makes its price step choice. We also assume
that ny is a Type I extreme value random variable that is in the conditional indirect utility
function associated with price step k. This random variable is assumed to be observed by

the household, but not the researcher.

Applying Roy’s Identity to the indirect utility associated with consuming on price step k,

ov oV
q= _8_]0 M (5)

yields the logarithm of ex post demand for electricity conditional on consuming along price

step k:
In(q) = B’ Ai + B2/ Z; + 3G — a(A;, Gy)in(pr) + p(Ai, G)In(I(A;) + di) + & (6)

where (A;) + di is the virtual income associated with consuming along price step k defined

above.
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This functional form implies that the coefficient determining the price responsiveness of de-
mand, «(A,G), is minus 1 times the exponential function of a linear combination of some
of the elements of the vector of the household’s demographic variables and its vegetation
index, and income responsiveness of demand, p(A, G), is an exponential function of a linear
combination of some of the elements of the vector of the household’s demographic variables

and its vegetation index.

This functional form allows for substantial differences in both the price responsiveness and
income responsiveness of water demand across households in each utility service territory.
Both the price and income coefficients depend on the value of the vegetation index for the
household’s property and a subset of the vector of demographic characteristics to allow for
differences in both the income and price elasticities across households and over time for the

same household.
The expected utility conditional on choosing price step £ is then equal to:

Efi [V(p, d7 Az’, Zi, Gi, €, ﬂ) ’ pk] —+ N =
) Baleap(ep'=" ) | pi] | Bu[(I(A) +d) 4
L= a4, Gi) 1= p(Ai, G

—exp(Bi Ai + B’ Zi + 3G,

Define g(A;, Zi, Gi, pr, di) = B Ai + Bo' Zi + B3Gi — a( Ai, Gy)In(pi) + p(Ai, Gi)In(I(A;) +dy.).
With this notation we can compute the following probabilities of ending up on each price

step conditional on facing price step k:
prob(Step =1 | pr) = prob(In(q) < In(q1) = ([In(q1) — 9(A;, Zi, Giypr, di)] /o) (8)
prob(Step = j | pi) = prob(In(g;—1) < In(q) < In(q;)) = ®([In(g;) —9(Ai, Zi, Gi, pr, di)] /o)
— O([In(qj-1) — 9(As, Zi, Gi, pr, di)] fo]) for 2 < j < N =1 (9)

prob(Step = N | pg) = prob(in(qn) < In(q)) = 1 —®([In(qn) — 9(Ai, Zi, Gi, pr, di.)] /o) (10)
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These results imply the following expected values given py:

= " prob(Step = j | pe)(I(A;) +dj)' 7% (11)

J=1

BL[(1(A) + )4

q;/exp(9(As,Z;,Gi,pr.di))

Zpl P G)/ sf(s)ds (12)

qj—1/exp(9(Ai, Zi,Gi,pk,dk))

1—a(A;,G;)

Ec lexp(e)p

where f(s) is the density of exp(e), where ¢; is N (0, 0?), dj is the virtual income value asso-
ciated with price step k. Note that g9 = 0 and gy = o0. We can evaluate equation (11| by
substituting equation [§] [0] and [10] into the right-hand side.

Using results from Jawitz| (2004), the equation can be re-written as:

1pAG) o?
Zp Serp(5)

[ln(%’)— (Ai,Zi,GmPk,dk) - UT ~erf {ln(q]'1)—9(1417Z¢,Gi,pk,dk) - 02”
ov/2 ov/2

Efi [exp(ei) pl

X {erf
(13)

where erf(t) = \/%?fot exp(—t?).

We can evaluate equation by substituting equation and into the right-hand
side. Now under our distributional assumptions, the density of w; given A;, Z;, G; is equal

to (here we emit the subscript ¢ for notation convenience):

N
flwi| Ay, Zi,Gi0) = > Prob(p = Pj|9)§¢([ln(wz‘) — 9(4Ai, Z;, Gi,pj. d;10)] /o) (14)
j=1
where ¢ = (517 5&7 535 64,17 657 ﬂé? 577 0)/ ) a(Aia Gz) = exp(A;64+Gzﬁ5)a p(Aza G’L) = 61‘]7(142564—
Giﬁ7), and
(15)

exp(E.,[V(p,d, A, Z;, Gy, €, j
prob(p = p,l6) = oy DLV o

Zszl e:Bp( el[v(pa da Ai7Zi7Gia€i75) |pk’])

This likelihood function accounts for the fact that the econometrician does not know which
price step that household planned to consume on at the start of the billing cycle and it can

only observe the household’s ex post consumption and ex post price step. Consequently,
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this observed consumption could be arrived at from consumption at any planned price step,
which why is written at the sum of step-probabilities and conditional density of In(q)
given that price step.

Maximizing this likelihood with respect to 6 yields the maximum likelihood estimates of
this parameter vector. Two sets of standard errors for the parameter estimates are com-
puted. The first set uses the inverse of the matrix of the sum of the outer products of
the observation-by-observation gradient of the log-likelihood for each household evaluated
at the maximum likelihood parameter estimates. The second set uses the |White| (1982)
quasi-maximum likelihood estimate covariance matrix which is equal to the inverse of the
matrix of second partial derivatives evaluated at the maximum likelihood parameter esti-
mates pre- and post-multiplied by the matrix of the sum of the outer products of gradient

of the log-likelihood function.

4.4 Alternate Nonlinear Pricing Demand Model

This section describes an alternate model of demand under nonlinear pricing that take a
different approach to account for the uncertain relationship between the demand for water
services and the consumption of water. This model was first presented and estimated in
Hewitt and Hanemann (1995). The superscript o is used to distinguish the notation for this

model from the previous one.

In this model, households are assumed to choose their consumption of water to maximize
utility subject to the nonlinear budget set created by the nonlinear price schedule. However,
after they make this choice the perception error is realized and this is added to the logarithm
of their optimal choice subject to the nonlinear budget constraint to yield the logarithm of

these observed water consumption.

We choose the following functional form for the observed portion of the water demand

function for household 7 conditional on consuming on price step k, and other variables A;,
Z;, and Gj:

ln(w,‘;) == BIO/AZ' + BS/ZZ' + ﬂng - O(O(Ai, GZ)ln(pk) + IOO(AZ‘7 Gz)ln(](Az) + dk) (16)

where a’(A,G) = —exp(A'B5 + GB2) and p°(A,G) = —exp(A'Bg + GP2). Define ° =
(B, B3, BS, BS, Be, B, B¢) as the vector of parameters of the demand /utility function for

this model. Note that this equation is very similar to Equation [0] of our new model.
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There are two sources of unobservables in this model, €© = (1°,v°)’, where n° ~ N (0, ago) and
v’ ~ N(0,02,) are independent random variables distributed independently across house-

/

holds and over time for the same household. The elements of € = (n°,v°)" are called the

°, and the household-level perception error, v°.

unobserved household-level heterogeneity, 7
Both are unobserved to researcher. The former is assumed to be observed by the household,
but the latter is assumed to be unobserved by the household. Moreover, the household does
not take any action to mitigate the impact of 1? in its realized consumption. Note that v ac-
counts for the fact that despite the individual’s best intentions to use only a certain amount
of water, each water service demand has technological uncertainty in the exact amount of

water it consumes.

The mapping from the realized values of the unobservables (n°, v°) to the observed value of
the logarithm of the household’s monthly billing cycle-level consumption, In(g), for a K-step

increasing block price schedule takes the form

In(w?) +n°+v° if n° <In(q) — In(w)

@)+ v° if In(q1) — In(wy) <n” <In(q1) — In(w3)

w§) +n°+v° if In(q) — In(ws) < n° < In(gz) — In(ws)

In(q) = ¢ In(q) +v° if In(ge) — In(wg) < n° < In(gz) — In(w$) (17)

if In(gx—1) — In(wh_;) <n° <In(ggx_1) — In(wy)

\ln(wf{) +n°+v°  if In(grx-1) — In(w$) < n°

Where q1, @2, . . . , g1 are quantity cutoffs of the nonlinear price schedule, and w{, w3, ..., w9
are defined in Equation [I6] This model embodies that the logic that given the realized value
of v? the household chooses where to consume along the nonlinear price schedule, by max-
imizing utility subject to the nonlinear budget set. The realization of exp(n°) is multiplied
by this optimal choice to determine where on this nonlinear price schedule the household

ultimately ends up.

Given the mapping, the likelihood function for the water demand for this model is the
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following;:

a4, 7,6 = 3 A (@) —0tm)) + 3 T @lm) —0(0)) (15

where
ti = [In(qr) — In(wy)]/oye
ri = (tpsi) AT — p?

O'no

RENC PRy

51 = (awn)- (i) fo + 0%
g, = (Mg—1-psk) /1 — p?

my, = (In(qx) — 1n(w2+1)/0n°

w, = (n(w;) — In(qy)) /0,0

Note that this model and our model both contain an error term that accounts for the fact that
household cannot perfectly control for their water consumption. However in the alternate
nonlinear price model, the exponential of the perception error is multiplied by the optimal
consumption to obtained the observed consumption, and existence of this error does not
affect the household’s decision making. In our model, household takes into account the fact
that there is uncertainty in the consumption throughout the billing cycle and chooses to
behave as if it consuming along the price tier that maximizes its expected utility taken with

respect to the distribution of these demand shocks within the billing cycle.

5 Estimation Results

This section first presents estimates of our model for both VoM and Cobb. This is followed

by the estimates of the alternative model.

5.1 New Model Estimates

Table [1] contains the estimation results for Valley of the Moon (VoM). Table |2| contains the
estimates for Cobb County. The coefficient estimates and the two sets of standard errors

described above are reported for each region. The number of households in the sample is also
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reported for each region. There are different numbers of months of data for each household

because of differences in billing cycles across households during the sample period for each

utility.

The following variables make up Z;;, the vector of weather characteristics that customer i

was exposed to during billing cycle t.[Z]

Average high temperature: The average of the daily maximum temperature values in

household i’s Zip Code during household i’s billing cycle.

Inter-quartile range of mazimum daily temperatures: The 75" percentile of the daily
maximum temperature values in household i’s Zip Code during household i’s billing
cycle minus the 25" percentile of the daily maximum temperature values in household

i’s Zip Code during household i’s billing cycle

Total precipitation in billing cycle: Sum of daily precipitation in inches during the

billing cycle for the Zip Code containing household i.

Interquartile range of daily precipitation: The 75" percentile of the daily precipitation
in household i’s Zip Code during household i’s billing cycle minus the 25" percentile

of the daily precipitation in household i’s Zip Code during household i’s billing cycle

Vegetation: Value of NDVI for household i as of the start of billing cycle t. Figure
and [5f present the histogram of the NDVI index for households in VoM and Cobb,
respectively. Consistent with the hotter and wetter climate in Georgia versus Northern
California, the average value of the NDVI in Cobb is higher than in VoM, and the spread
of the distribution of the NDVT is significantly larger in Cobb relative to VoM.

The household-level demographics variables, the vector A, all come from the PUMS data set.

A subset of the available demographic variables most likely to predict differences in water

demand across households are included A.

Monthly income of household: Monthly household income in 2012 dollars. (Annual
number reported in PUMS data divided by 12)

Number of people over 18 years-old living in the household

Number of people under 18 years-old living in the household

7All of the Zip Code-level weather data for each utility was obtained from the www.wunderground.com.
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e House Size Indicators: House acreage between 1 and 10 acres. House acreage above

10 acres.

o Number of bedrooms in the house

As discussed earlier, for each household sampled by the US Bureau Census in that Zip
Code, this demographic information is reported along with a sampling weight which gives
the number of households in the Zip Code estimated to have this same vector of demographic
characteristics as the sampled household. Dividing each sampling weight by the sum of the
sampling weights for all households sampled in that zip code yields the weight, wt (i, n), used

in the construction of the likelihood function.

The price coefficient differs across households in the utility service territory, because the
coefficient on the logarithm of price depends on A;, and G;. Nonlinear pricing of water
and the assumed stochastic structure described in Section that gives rise to the joint
density of W;, the vector of billing cycle-level consumption values for household i, implies
that the coefficient on the logarithm of price for a given household cannot be interpreted
as a price elasticity of demand. The same logic applies to the coefficient on logarithm of
household-level income. Nevertheless, as shown in Section [7] analogues to price and income

elasticities can be computed with respect to the expected water demand of the household.

Parameter estimates of the model can be used to compute the posterior probability that
household i has the vector of demographics A;, given its vector of billing cycle-level con-

sumption W; as:

'lUt(Z, n) HZ‘:(? f(wit|Ain7 Zit7 Git7 9)
S YV wt(i, ) [T f(wiel Asj, Zie, Gar, 0)

P(Ai| W) = (19)

For each household in the sample, the value of A;, that has the highest posterior probability
for that household is assigned that vector of demographics for the purposes of computing
the distribution of system-wide sales and revenues, and the counterfactual pricing, assuming

that the utility knows each household’s demographic attributes presented in Section [§

5.2 Alternate Demand Model Results

Tables 3 and 4 present the parameter estimates and two sets of standard errors the alternate

nonlinear pricing model for VoM and Cobb.
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6 Specification Tests for Single Price Models

This section presents the results of specification tests for the household-level demand model
subject to nonlinear pricing. These tests uses four alternative single price models of the
household-level demand for water. We also test our demand model against the alterna-
tive nonlinear pricing demand model. From the results of Vuong (1989)), the appropriately
normalized difference between these optimized log-likelihood functions has an asymptotic
N(0,1) distribution under the null hypothesis that both models are equidistant (according
to the Kullback-Leiber criteria) from the true unknown data generation process. The direc-
tion of rejection of the two-sided test indicates which of the two competing models provides
a statistically superior description of the distribution of the observed endogenous variables

given the observed conditioning variables.

Four alternative single price demand models are considered for the same functional form and

distribution of unobservables. The functional form for each of the four demand functions is:
In(w*(p*, 1", A,G, Z, ")) = AB] + Z'85 + G'B5 + o™ (A, G) In(p*) + p"(A,G) In(I") (20)

where a*(A, G) = —exp(A'Sf + GBE) and p*(A,G) = —exp(A'S§ + GBZ). The four mod-
els differ only in terms of what variables are substituted for the price p* and income I* in
equation . Given the assumed distribution N (0, 0*?) for the error term €*, each of these

models gives rise to a log-likelihood function which is then optimized with respect to (5%, 0*).

The four single price models considered are:

e 1) Actual price tier: p* = tier price at actual consumption level and I* = actual income

less the fixed connect charge

e 2) Average variable price: p* = (Variable Cost of Bill)/(Actual Consumption) and [*

= actual income less the fixed connect charge

e 3) Alternative actual price tier: p* = tier price at their actual consumption and I* =
actual income less the fixed connect charge plus additional income due to nonlinear

price schedule

e 4) Total Average Price: p* = (Total Bill)/(Actual Consumption) and I* = actual

income

Note that the each of the above prices is calculated using data from the previous billing cycle

instead of the current billing cycle. The primary reason for using values from the previous
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billing cycle is that consumers do not know their average price or their realized marginal
price until the end of the current billing cycle, after they make their consumption decision.
Researchers argue against consumers responding to nonlinear price schedules, instead argue
that consumers respond to the average or realized marginal price from the previous billing
cycle. See for example, [Ito| (2014)), Fan and Hyndman| (2011)), Charney and Woodard| (1984)).
Using the realized average price from the current period creates a logical inconsistency that

the consumer does not know this price until billing cycle is complete.

To illustrate how we perform the specification test, let In(f(Y|.X, #)) denote the log-likelihood
function for an observation from the demand model with non-linear pricing and In(g(Y'| X, )
the log-likelihood function for one of five competing price response models. |Vuong (1989)
proposed the following non-nested test between two competing parametric models for the

conditional density of Y given X

H: E(ln(f(Y]X,07))) = E(In(g(Y]X,7") versus K: E(In(f(Y'|X,6%))) # E(In(g(Y]X,77)))

(21)
where FE(.) is expectation with respect to true joint distribution of Y and X, 6* and ~*
are probability limits of the maximum likelihood estimates of 8 and . The null hypothesis
is that the expected value of the log-likelihood functions for both models with respect to
h(Y, X), the true joint density of Y and X, are equal versus the alternative that expected
value for one model is greater than the other. Failure to reject the null hypothesis implies
that both models are equidistant from the true data generation process, whereas a rejection
implies that one model has a statistically superior average log-likelihood function value than

the others, with the direction of rejection indicating which model is superior.

To implement the hypothesis test, we need to first estimate the models that we test against.
For the four single price alternative demand models, because we are using data from the pre-
vious billing cycle to calculate the price variable, we lose the first billing cycle observation
for all the households. However, to implement the hypothesis test, we need to ensure that
the two model we compare have the same observations. To include the first billing cycle, we
use the household’s average price across all the billing cycles as the price variable for the first
billing cycle. The parameter estimates of the four alternative models for Valley of Moon are
presented in Table 5] [6] [[] and [§] The parameter estimates of the four alternative models for

Cobb are presented in Table [9 [10} [11] and [12]

For each of the five alternative models, we compute H; = In(f(Y;|X;,0))-In(g(Y;|X;,4)), the
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difference between maximized log-likelihood function value for j* observation for each model
where 6 is maximum likelihood estimate of #* and 4 is the maximum likelihood estimate of

~*. [Vuong (1989) shows that under null hypothesis,
L=VNH/S (22)

is asymptotically N(0,1) where N is the number of customers, H = * Zfil H; and S =

VASN, (- A

Table shows the results of these hypothesis tests for VoM and Cobb for each of the
five alternative price response models—our alternative nonlinear pricing model and the four
alternative single price models. In all five cases and both datasets except for the VoM total
average price model, the null hypothesis is overwhelmingly rejected against the alternative
hypothesis. Based on the direction of the rejection, we can see that our nonlinear price
model has higher average log-likelihood value, which is consistent with the conclusion that it
provides a statistically superior description of the conditional density of Y given X relative
for the other models considered. For the case of VoM total average cost model, we cannot

reject the null hypothesis.

7 Using Model to Reduce Revenue and Quantity Risk

The estimates of the parameters of the household-level demand model given in Table
and [2| make it possible to compute an estimate of the distribution of a household’s wa-
ter consumption and monthly bill for any nonlinear price schedule either conditional on the
household’s assigned demographic characteristics or without conditioning on the household’s

demographic characteristics.

The expected value and variance of these magnitudes can be computed as follows. For
notational convenience, we assume that all the equations in this section are evaluated at the
maximum likelihood estimates given in Table[T]and 2 Let A* be the household demographic
characteristics. Let P be the price schedule faced by the household, which may depend on
the household’s demographic characteristics A*. The notation of p;, g;,d; are the same as
previous sections. Let R(-) be the bill amount function corresponding to P. Let w*(A*, P)
denote the household consumption and R*(A*, P) denote the household bill amount. Note
that the consumption function and bill function depend on variables other than demographic

characteristics and price schedule. For notation convenience we do not expand for the other
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variables. The household has expected consumption and the variance in this consumption
equal to:

Ew*(A*, P)] = emp ZProb p =p;exp(9(A*, Z,G, p;,d;)) (23)

7j=1

Viw (4, P)) = Y Probp =p)) [ eop(a(4°,2.G.pyod) + 92 (5)ds — Elu’ (4", P

(24)
where f*(s) is the density function for the normal distribution N(0,0?), Prob(-) is defined
in equation . A* is assigned by the rule based on equation (19). The expectation and

variance are taken with the distribution of ¢ and 7.

A household with assigned demographic characteristics A* has an expected monthly water

bill and the variance of its monthly water bill equal to:

E[R*(A*, P ZProb p=D;j / R(exp(g(A*, Z, G, p;,d;) + 5)) f*(s)ds (25)
VIR (A" P) = Y Probp =) [ Rleap(o(A',2,G.pyoy) + 8)7(5)ds — IR (4", P)F
(26)

For the case that the household i’s demographics are assumed to be unknown, the house-
hold’s expected monthly water consumption and bill and the variance in its monthly water

consumption and bill are equal to:

Zwt i,n)Elw*(A,, P)] (27)

:Zwt(i,n)(V[w*(An,P)]+E[w*(An,P)]2) — Elw*(-, P)]? (28)

and
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L(4)
VIR*(-, P)] = Y wt(i,n)(V[R*(Ay, P)] + E[R*(A,, P)]) — E[R*(- P)]*  (30)

The expectations in equations to are taken with respect to the distribution of (e, n)
and the distribution of the demographic characteristics within the household’s Zip Code.
The expectations in equation to are taken with respect to the distribution of (e, n)
for the value of the household’s demographic characteristics assigned using the vector of de-
mographic characteristics with the highest posterior probability as determined by equation
. Consequently, comparing the variance of water consumption and total revenues given
the assigned value of A and the variance with respect to distributions of € and A provides a
measure of the value of demographic information to utility. It is also possible to substitute
the posterior probabilities computed from equation into equation to and com-
pute the expected values and variances of sales and revenues based on these distributions of

the demographic characteristics for household i.

These expressions in equation and can also be used to compute analogues to the
price elasticity and income elasticity of the demand for water. For the case of the price

elasticity this is computed as
{E[w(P, A")] = Elw(PT, A)]}/{0.05 - E[w(P, A7)]} (31)

where P is the actual nonlinear price schedule charged by the utility and P* is the actual
nonlinear price schedule with each price step multiplied by 1.05. This “price elasticity” is the
percent change in household i’s expected water consumption as a result of a 5 percent increase

¢

in all prices on the nonlinear price function divided 0.05. Computing an “income elasticity”
as the percent change in expected consumption from a 5 percent increase in household i’s in-
come divided by 5 percent yields the coefficient on logarithm of income. Since demographic
characteristics and vegetation index are included in the income and price coefficients, we

have different “price elasticity” and income “elasticity” for each household.

The “price elasticities” can be computed conditional on the vector of the household’s de-
mographic characteristics or unconditional on the household’s vector of demographic char-
acteristics. The only differences in the two “price elasticities” is whether the expectations
in equation (31 are taken with respect to the distribution of A or assume a fixed value of

A. Figure [§ and [9] compute the joint distribution of income and price elasticities for VoM
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and Cobb, respectively, using the posterior distribution of A, given in equation for each
observation in the sample. There is considerable heterogeneity in these elasticity estimates
for both utilities.

It is also possible to compute the distribution of water consumption for all households in the
utility’s service territory and analogous aggregate demand elasticity estimates. Suppose there
are J types of households, where households of type j have a vector of observed attributes,
A;, and H; is the number of type j customers in the utility’s service territory. This implies
that the expected sales of water by the utility (summed across all customers) associated with

rate schedule P is:

J
Expected System-wide Water Sales = Z Elw*(P, A;)|H; (32)
=1
J
Variance in System-wide Water Sales = Z Viw* (P, A;)|H; (33)
=1

Following the same procedure for system-wide revenues yields:

J
Expected System-wide Revenues = Z E[R*(P, A;)|H; (34)
j=1
J
Variance in System-wide Revenues = Z VIR* (P, Aj)|H; (35)
j=1

The aggregate or system-wide “price elasticity of demand” can be computed by finding the
percentage increase in expected system-wide demand as a result of a 5 percent increase in
all price steps faced by all customers divided by 5 percent. The aggregate “income” elas-
ticity is the percentage increase in expected system-wide demand as a result of a 5 percent
increase in all customer incomes divided by 5 percent. Other functions of the distribution of
system-wide sales and revenues can be computed. The water utility or its regulatory body
might be interested in the probability that system-wide sales or revenues exceed or fall below
a pre-specified value for a prospective rate schedule. The model estimates can be used to

compute that probability.
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8 Counterfactual Price Schedules

This section first quantifies the revenue risk reduction that is possible for the utility simply
from gathering information on the demographic characteristics of its customers. It then
reports on the computation of counterfactual price schedules to achieve two policy goals to

demonstrate potential uses of our model of demand.

First, we illustrate the possible risk reduction by gathering information on customer de-
mographic characteristics. For both Cobb and VoM, the distribution of sales and revenues
for each household is computed under three different assumptions about the distribution of
demographic characteristics in each zip code in order to quantify the impact of compiling
information on the demographic characteristics of each household in the utility’s service terri-
tory. The first case assumes the demographic characteristics of each household are unknown,
but drawn from the prior distribution for that zip code obtained from the PUMS data. The
second case assumes the household’s demographic characteristics are unknown, but drawn
from the posterior distribution for that zip code obtained from the model estimated and
equation [19) The final set assumes the household’s demographic characteristics are known

and set equal to the value of A, with the highest posterior probability from equation 19,

Table[14]and [15|report the expected revenue per month per customer, the standard deviation
of system-wide revenues, expected consumption per month per customer, and the standard
deviation of system-wide consumption per month for each of the three distributions of de-
mographic characteristic for each household. Two conclusions emerge from this table. First,
for both VoM and Cobb, the standard deviation in system-wide revenues for the case of
known demographics is between 0.78 = (725/926) and 0.16 = (2100/13119) of the value for
case that the demographics are drawn from the prior distribution of A,. Second, using the
posterior distribution instead of the prior distribution of A,, yields an estimate of the system-
wide standard deviation of revenues that is slightly larger than the value for case that the
vector of demographic characteristics is assumed to be known. Taken together these results,
emphasize that even the imperfect knowledge of the value of A, obtained from estimating
the demand model and computing the posterior distribution of A, can significantly reduce

the sales and revenue risk faced by each utility.
Next, we compute counterfactual price schedules to achieve relevant policy goals to demon-

strate potential uses of our model of demand. For VoM, we first compute a counterfactual

price schedule that is consistent with California’s current water demand reduction goals and
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is also unlikely to run afoul of Proposition 218, which requires that municipal water cus-
tomers only pay for the cost of the water that they consume. Specifically, we compute a
price schedule which yields 25 percent less system-wide water sales than the existing price
schedule with 95 percent probability and achieves the system-wide expected revenue goals
based on Proposition 218, while minimizing a measure of the financial burden of achieving
these water consumption reduction goals across all classes of customers. The price sched-
ule chosen minimizes the weighted sum of the squares of the difference between expected
payments by each household under the counterfactual schedule and the current price sched-
ule weighted by the inverse of that household’s expected payments under the current price
schedule. This objective function places the greatest burden to achieve water consumption
reductions on households that currently have the largest water bills. We also compute a
second counterfactual price schedule, with the same objective function and constraint, but

instead offer households two price schedules for them to choose from.

For Cobb, we first compute a price schedule which yield the same or superior sales and
revenue outcomes for the utility but minimizing aggregate revenue risk. This price schedule
minimizes the standard deviation of utility-wide water revenues subject to the constraints
that the utility expects to sell no more water than it does under the current price schedule
and raises at least as much total revenue for the utility as the existing rate. We then solve
the same optimization problem subject to the same constraints, but allow the utility to set
two price schedules that depend on value of the household’s NDVI. Specifically, the utility
is allowed to set a schedule for households with an NDVI value less than 0.35 and one for
households for an NDVI value greater than 0.35.

Three main conclusions emerge from this counterfactual price schedule design exercise:

e 1) The model of the household-level demand for a water utility can be used to reduce

the system-wide revenue or sales risk associated with achieving any water pricing goal.

e 2) By compiling information on the demographic characteristics of their customers
and building this information into the utility’s model of household-level water demand,
utilities can significantly reduce (up to 84% for two utilities considered) both the water

sales and revenue risk associated with any expected water sales and revenue goals.

e 3) The customer-level model of demand incorporating demographic characteristics can
be used to design a menu of price schedules that can be offered to households (that
allows them to select which specific price schedule they would like to be) to achieve a

given water pricing goal for the utility.
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The price schedule optimization framework can readily incorporate constraints like the ma-
jority of customers have the same or lower monthly water bills under the optimal price
schedules compared to the current schedules. For the rest of the counterfactual price design,

we use the predicted demographics to compute consumption and revenue.

8.1 VoM — Predicted Demographics

This section considers a set of counterfactual price schedule choices that reflect policy goals
and constraints relevant to California during the summer of 2015, the fourth consecutive
summer of low water availability in the state. As a consequence, in the spring of 2015,
Governor Jerry Brown issued an executive order requesting a 25 percent reduction in urban
water consumption state-wide relative to 2013. A pre-existing legal constraint has further

complicated the ability of municipal utilities to achieve this goal.

Proposition 218-The Right to Vote on Taxes Initiative requires that municipal utility con-
sumers only pay what it costs to provide them with the water that they consume. AB
2882—Allocation-based conservation water pricing, signed into law in 2008, attempts to clar-
ify how nonlinear pricing of water can be implemented to avoid running afoul of Proposition
218. However, a lawsuit filed by customers of the municipal utility in San Juan Capistrano
and the resulting decision which struck down the utility’s increasing block rate structure
has led to considerable uncertainty over the use of nonlinear pricing of water in California,
studied by [Stephens| (2015)).

One possible solution to this problem is to determine a system-wide average cost of delivering
a thousand gallons of water for the utility and then set a nonlinear price schedule so that
the revenues recovered from each type of household (as determined by their demographic
characteristics) equals this average cost times the amount of water they consume. Because
this average cost information is not available for VoM, an aggregate revenue constraint is im-
posed that households in the utility service territory do not pay more under the new schedule
than they pay under the existing price schedule. (The constraint implicitly assumes that the
utility was only recovering the cost of the water supplied under the existing schedule.) The
other constraint on the counterfactual price schedule is that it reduces system-wide water
consumption by 25 percent relative to expected consumption under the existing schedule
with at least a 95 percent probability. We impose no other constraints on the price schedule,
except that it should be an increasing block tariff (the prices for each tier should be increas-

ing). We also determine a uniform fixed cost for the counterfactual price schedule.
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The objective function assumed for the optimal tariff design problem is to minimize the
weighted sum of squared differences between each household’s expected monthly bill under
the current price schedule and the household’s expected monthly bill under the counterfactual
price schedule, where the weight applied to each household-level squared difference is the
inverse of that household’s expected monthly bill under the current price schedule. This
objective function is designed to obtain the largest revenue increases from households with
the largest current water bills and the smallest revenue increases from households with
the smallest current water bills. Finding this price schedule requires solving the following

optimization problem:

min » " [E(Ry(P(w))) — E(Ry(Pe(w)))]*/E(Ry(Pe(w)))

H
P(w) 1

T

subject to Prob(z qn(P(w)) < 0.752 qh(Pe(w)))) > 0.95 (36)

h=1

M=

and E[ Ru(P(w)) — Rh(Pe(w))] <0

h=1

where P(w) is the price schedule being solved for, P.(w) is the existing price schedule,
R ((P(w))) is the revenue received from household h under the price schedule P(w), ¢, (P(w))
is the quantity demanded by household h under the price schedule P(w), and E(-) is the

expectation operator.

There are many other possible objective functions to optimize to obtain Governor Brown’s
desired 25 percent reduction in system-wide water consumption with a high probability. This
one has the desirable property of putting less of the burden on households that are currently

spending less on water.

Figure plots the major current price schedule and price schedule that solves equation
. Figure (11| plots the simulated distribution of household-level consumption under the
current price schedule set by VoM and simulated distribution of household-level consumption
under the counterfactual price schedule. We also present the expected revenue per month
per customer, the standard deviation of system-wide revenues, expected consumption per
month per customer, and the standard deviation of system-wide consumption per month un-
der the current and counterfactual price schedule. We can see that under the counterfactual

price schedule, expected consumption per month per customer drops significantly, and the
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expected revenue per month per customer also decreases. This is consistent with our policy

goals.

In our second scenario, we have the same objective function to minimize and the same con-
straints on revenue and consumption. Instead of offering one single price schedule to every
household, we now offer two price schedules and the household can choose whichever they
want. We assume that the choice of price schedule happens after their realization of 7y,
the Type I extreme value random variable that is in the conditional indirect utility function
associated with price step k. Thus, households can choose the price tier that yields the

highest expected utility among price tiers from both price schedules.

Figure plots the major current price schedule and the two optimal counterfactual price
schedules that households can choose from. The two counterfactual price schedules usually
charge a higher marginal price than the current price schedule in order to reduce system-
wide consumption. To compare between the two counterfactual price schedules, schedule
1 usually charges a higher marginal price than schedule 2, but has a lower fixed cost than
schedule 2. Thus it makes sense for households with high consumption to choose schedule 2
to enjoy the low marginal price, and households with low consumption to choose price 1 to
avoid the higher fixed cost. Figure [13]| presents the histogram of consumption distribution
for households under current price schedule, households choosing schedule 1, and households
choosing schedule 2. Consistent with our prediction, households choosing schedule 1 consume
less water compared to households choosing schedule 2. Households choosing schedule 2,
despite facing a higher price schedule, consume more water than households under the current
schedule. This suggests that households with high water consumption are more likely to

choose schedule 2. This is again consistent with our intuition.

8.2 Cobb — Predicted Demographics

We compute multiple counterfactual price schedules for Cobb, with different price constraints
and price schedule structure. The objective function is always to minimize the standard de-
viation of system-wide revenue. To maintain the structure of the 5-tier price schedule, we
impose the following constraints on all the counterfactual computation: the first quantity
cutoff of the counterfactual must be the same as the first quantity cutoff of the current
schedule; the other quantity cutoffs of the counterfactual must not be bigger than the corre-
sponding quantity cutoff of the current schedule; the price tiers must be increasing with at
least $0.1; the fixed cost cannot be bigger than $15.
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Figure [14] plots the actual price schedule faced by customers in Cobb County. This figure
also plots two optimal counterfactual price schedules. Both price schedules are computed by
minimizing the standard deviation of system-wide revenues subject to the constraints that
expected revenues are at least as large as under the current price schedule and expected
water sales are no larger than under the current price schedule. The only difference is that
one has no additional constraints besides what mentioned in the previous paragraph, and
the other has two additional price constraints to make sure the marginal prices are not too
high: the lowest marginal price cannot be higher than the lowest marginal price in the actual
price schedule, and the highest marginal price cannot be higher than the highest marginal
price in the actual price schedule. Without the additional two price constraints, the counter-
factual schedule reduces the standard deviation of system-wide revenues by 79%. With the

two additional price constraints, we still see a 10.3% decrease in the system-wide revenue risk.

Figure [15| plots the simulated distribution of household-level consumption under the current
price schedule set by Cobb and the simulated distribution under the two optimal counter-
factual price schedules described in Figure We also present the expected revenue per
month per customer, the standard deviation of system-wide revenues, expected consump-
tion per month per customer, and the standard deviation of system-wide consumption per
month for all the scenarios. For the scenario ” Counterfactual with price constraints”, we can
see that the consumption constraint in the optimization problem is binding, which means
that the system-wide aggregated consumption level remains the same under the counterfac-
tual compared to the system-wide aggregated consumption level under the current schedule.
Consumption distribution doesn’t change much as well. We do see increase in the expected
revenue per month per customer, and decrease in the standard deviation of system-wide
revenues. Without any constraints on price, we see a much higher price schedule in the
scenario ”Counterfactual without price constraint”. As a result, we see significant drop in
consumption, both from the consumption histograms and the expected consumption per
month per customer. Revenue constraint in the optimization problem is binding now, thus
the expected revenue per month per customer remains the same. We also see a huge drop in
standard deviation of system-wide revenue, which is our objective function in the optimiza-

tion problem.
Figure [16| plots the optimal NDVI-based price schedules when we can differentiate household

based on their vegetation index and charge them with different price schedules. Similarly,

the optimal NVDI-based price schedule minimizes the standard deviation of system-wide
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revenues subject to achieving at least as much expected revenues and no larger expected
water sales than the actual price schedule. What is different is that the NDVI-based price
schedules consist of two schedules, one assigned to customers with a value of NDVT less than
0.35 and the other assigned to customers with an NDVI value more than 0.35. Both sched-
ules are subject to the price constraints described in the first paragraph of this subsection
and also the two additional price constraints in the previous paragraphs. Figure [17]plots the
simulated distribution of household-level consumption under the current price schedule set
by Cobb and the simulated distribution under the two different price schedules based on veg-
etation index. We also present the expected revenue per month per customer, the standard
deviation of system-wide revenues, expected consumption per month per customer, and the
standard deviation of system-wide consumption per month for the current and counterfac-

tual price scenario.

Notice that besides the differentiation based on vegetation index, this scenario is otherwise
the same as the ” Counterfactual with price constraints” in Figure [14] and [15] Through dif-
ferentiated pricing, we see another 1% decrease in the standard deviation of system-wide
revenues. We again see that the expected consumption per month per customer remains
the same as the current level, while the expected revenue per customer per month increases

compared to the current level.

Looking at the two counterfactual price schedules based on vegetation index in Figure we
notice that households with vegetation index<0.35 face a higher price schedule than house-
holds with vegetation index > 0.35. This is consistent with Figure [18, where we plot the
histograms of price elasticities for household with vegetation index<0.35 and with vegetation
index > 0.35 separately. In general, households with vegetation index<0.35 are more price
inelastic, while households with vegetation index > 0.35 have more elastic demand. It makes
sense to set higher price for households with more inelastic demand, namely households with
vegetation index<0.35. We also notice from Figure (17| that households with vegetation in-
dex > 0.35 consume more than households with vegetation index < 0.35. This is consistent
with our intuition that more vegetation requires more water consumption, and the fact that

households with vegetation index > 0.35 face lower price.

A number of other counterfactual price schedules can be computed that depend on demo-
graphic characteristics, elements of Z, and combinations of these variables. Further reduc-
tions in the standard deviation on system-wide revenues are possible with greater differenti-

ation of price schedules based on household characteristics.
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9 Conclusion

Model of demand can be used to simulate the distribution of the customer-level billing cy-
cle level household demand for water for any increasing block price schedule. This model
can then be used to simulate the distribution of the system-wide demand for water for any
nonlinear price schedule. Consequently, we can use this model to design price schedules that
achieve a wide range of water supply risk or revenue risk management goals in the utility’s

rate design process.

An important implication of this modeling and simulation exercise is to demonstrate the
tremendous reduction in revenue risk facing the utility if it has the information on the de-
mographic characteristics of its households. For the case of Cobb, the measure of the variance
of system-wide revenue conditioning on the assumed knowledge of the vector of demographic
characteristics was roughly 16% of the measure of the variance of system-wide revenues as-
suming that only the distribution of demographic in each Zip Code in the utility’s service

area was known.

The model was used to show that further revenue variance reductions could be achieved
by demographics-based price schedules. The household-level water demand model was used
to solve for the optimal (minimum system-wide revenue variance) demographic-based price
schedules. Again, significant variance reductions were possible when we have more demo-
graphic information. The model can even be used to assist the utility in managing water

shortfall and potential revenue shortfalls.

The results presented here demonstrate that there is significant value to utility from un-
derstanding distribution of household level demand to design price schedules to achieve
competing policy goals. In particular, by compiling demographic data from customers and
using in customer-level models of demand, utilities can significantly reduce the variance in
both the system-wide revenues and the amount of water sold in any price schedule design
process. This results implies up to roughly 84% reduction in the revenue risk that the utility
faces from knowledge of the demographic characteristics of its customers is possible, sug-
gests significant economic benefits to water utilities from collecting demographic data on its

customers and formulating household-level demand models for price schedule design.
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Tables

Table 1: Model Parameter Estimates, Valley of The Moon, California, Nonlinear Model

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -3.70677  0.07458 0.21342
Constant in the price elasticity formula -0.88211  0.02658 0.11121
Std.dev. of demand shock 0.27934  0.00236 0.00435
Constant 3.14291  0.10957 0.14946
Average high temp in billing cycle 0.01787  0.00110 0.00131
75th - 25th percentile of temperature in billing cycle -0.00579  0.00150 0.00094
Total precipitation in billing cycle -0.00303  0.00420 0.00325
75th - 25th percentile of precipitation in billing cycle -0.09926  0.32078 0.30925
Number of people over 18 in house -0.87256  0.01470 0.03795
Number of people under 18 in house 0.99133  0.00916 0.02708
House acreage above 1 acre 0.41858  0.00886 0.02095
Number of bedrooms in house -0.40277  0.00668 0.01136
Price*temp -0.00784  0.00057 0.00125
Price*precip -0.00035  0.00179 0.00248
Price™ # of adults -0.09592  0.00993 0.03001
Price® # of children 0.74159  0.00963 0.03904
Price* # of bedrooms -1.02665  0.01484 0.08791
Income™ # of bedrooms -1.30210  0.03244 0.11138
Vegetation Index 0.06638  0.06928 0.08475
Income*Vegetation Index 0.02277  0.08146 0.13313
Price*Vegetation Index 0.01531  0.04590 0.08007
Number of customers 2001
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Table 2: Model Parameter Estimates, Cobb County, Georgia, Nonlinear Model

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant Term in income elasticity formula -0.47228  0.01263 0.03522
Constant Term in price elasticity formula 0.48235  0.01288 0.02028
Std.dev. of demand shock 0.21543  0.00247 0.00594
Constant -1.44246  0.12488 0.32257
Average high temp in billing cycle 0.00259  0.00058 0.00093
75th - 25th percentile of temperature in billing cycle 0.00166  0.00128 0.00114
Total precipitation in billing cycle 0.01142  0.00504 0.00647
75th - 25th percentile of precipitation in billing cycle -0.20471  0.12739 0.11624
Number of people over 18 in house 0.39160  0.01033 0.02420
Number of people under 18 in house -0.48318  0.00721 0.01843
House acreage above 1 acre -0.00053  0.02260 0.03944
Number of bedrooms in house 0.32012  0.01763 0.04764
Price*temp -0.00117  0.00012 0.00029
Price*precip 0.00028  0.00101 0.00185
Price* # of adults 0.02143  0.00240 0.00494
Price* # of children -0.13161  0.00227 0.00658
Price* # of bedrooms -0.71587  0.00941 0.00853
Income* # of bedrooms -0.64361  0.00898 0.01221
Vegetation Index -0.40642  0.04940 0.05576
Income*Vegetation Index 0.40519  0.02532 0.05125
Price*Vegetation Index 0.40937  0.02872 0.05442
Number of customers 1004
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Table 3: Model Parameter Estimates, Valley of The Moon, California, Alternate Nonlinear Price Model

Parameter Name Estimate Standard Error Standard Error
(Outer Product (White (1982)
of Gradients) Formula)

Constant in the income elasticity formula -0.85194  0.02877 0.06931

Constant in the price elasticity formula 0.05170  0.07406 0.11288

Std.dev. of household heterogeneity, n° 0.28244  0.00962 0.01733

Std.dev. of perception error, v° 0.23489  0.01100 0.01899

Constant -8.60166  0.19820 0.35696

Average high temp in billing cycle 0.06809  0.00142 0.00271

75th - 25th percentile of temperature in billing cycle -0.01786  0.00181 0.00138

Total precipitation in billing cycle -0.00679  0.00454 0.00613

75th - 25th percentile of precipitation in billing cycle -1.46303  0.35349 0.40253

Number of people over 18 in house 1.49165  0.04932 0.07654

Number of people under 18 in house -0.53010  0.03370 0.06262

House acreage above 1 acre 0.30189  0.02093 0.04124

Number of bedrooms in house 0.32636  0.01632 0.03145

Price*temp 0.01510  0.00099 0.00148

Price*precip -0.00996  0.00207 0.00286

Price* # of adults 0.41921  0.01314 0.03324

Price® # of children -0.79405  0.03575 0.04886

Price* # of bedrooms -0.55449  0.01134 0.03011

Income® # of bedrooms -0.35649  0.01319 0.01633

Vegetation Index 0.89537  0.20289 0.38153

Income*Vegetation Index -0.16842  0.07123 0.13055

Price*Vegetation Index 0.07914  0.05887 0.10221

Number of customers 2001
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Table 4: Model Parameter Estimates, Cobb County, Georgia, Alternative Nonlinear Price Model

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -1.50618  0.04998 0.09037
Constant in the price elasticity formula -0.04314  0.08634 0.20551
Std.dev. of household heterogeneity, n° 0.05313  0.04708 0.08209
Std.dev. of perception error, v° 0.37147  0.00605 0.01237
Constant 0.49737  0.08503 0.13644
Average high temp in billing cycle -0.00762  0.00120 0.00164
75th - 25th percentile of temperature in billing cycle 0.00302  0.00157 0.00143
Total precipitation in billing cycle -0.00146  0.00668 0.01043
75th - 25th percentile of precipitation in billing cycle -0.34150  0.17086 0.14969
Number of people over 18 in house 0.69489  0.03076 0.08129
Number of people under 18 in house -0.36883  0.01261 0.04468
House acreage above 1 acre -0.06528  0.03710 0.04857
Number of bedrooms in house 0.15980  0.04141 0.06387
Price*temp -0.00638  0.00044 0.00102
Price*precip -0.00175  0.00152 0.00391
Price* # of adults 0.14059  0.00931 0.01899
Price® # of children 0.03184  0.00261 0.00906
Price* # of bedrooms 0.41575  0.02009 0.02969
Income® # of bedrooms 0.50085  0.01929 0.02963
Vegetation Index -0.08881  0.06354 0.09905
Income*Vegetation Index 0.44660  0.06923 0.13087
Price*Vegetation Index 0.35808  0.06957 0.14615
Number of customers 1004
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Table 5: Model Parameter Estimates, Valley of The Moon, California, Alternative 1

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -0.47265  0.02150 0.03702
Constant in the price elasticity formula -3.36721  0.33528 0.66109
Std.dev. of error term 0.36656  0.00133 0.00718
Constant -3.15137  0.20755 0.31736
Average high temp in billing cycle 0.01430  0.00118 0.00152
75th - 25th percentile of temperature in billing cycle -0.01634  0.00179 0.00135
Total precipitation in billing cycle 0.00491  0.00402 0.00488
75th - 25th percentile of precipitation in billing cycle -0.65539  0.34797 0.38098
Number of people over 18 in house -0.42495  0.02643 0.04996
Number of people under 18 in house -0.06685  0.01060 0.01658
House acreage above 1 acre -0.64191  0.02203 0.04327
Number of bedrooms in house 0.11507  0.01443 0.02945
Price*temp -0.05502  0.00198 0.00361
Price*precip 0.01083  0.00317 0.00754
Price* # of adults 0.55557  0.02382 0.04258
Price* # of children -3.36712  0.49235 1.01796
Price* # of bedrooms -0.96219  0.02155 0.05693
Income* # of bedrooms -0.16105  0.00520 0.01177
Vegetation Index -0.94390 0.31134 0.43796
Income*Vegetation Index 0.23268  0.06210 0.08509
Price*Vegetation Index 0.35340  0.11652 0.29195
Number of customers 2001

42



Table 6: Model Parameter Estimates, Valley of The Moon, California, Alternative 2

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -0.33191  0.01733 0.04288
Constant in the price elasticity formula -2.06277  0.15052 0.26083
Std.dev. of error term 0.36447  0.00129 0.00701
Constant -4.25562  0.17069 0.44819
Average high temp in billing cycle 0.01186  0.00137 0.00152
75th - 25th percentile of temperature in billing cycle -0.01557  0.00177 0.00133
Total precipitation in billing cycle 0.00397  0.00435 0.00459
75th - 25th percentile of precipitation in billing cycle -0.76789  0.33990 0.39514
Number of people over 18 in house -0.87397  0.02253 0.02785
Number of people under 18 in house -0.38895  0.00925 0.01391
House acreage above 1 acre 0.45748  0.02080 0.07069
Number of bedrooms in house 0.46729  0.01425 0.03532
Price*temp -0.04331  0.00173 0.00324
Price*precip 0.00954  0.00318 0.00496
Price* # of adults -1.00047  0.04438 0.08447
Price* # of children -1.63913  0.16855 0.20597
Price* # of bedrooms -0.00185  0.00480 0.01422
Income* # of bedrooms -0.17174  0.00395 0.00651
Vegetation Index -0.06406  0.24490 0.66623
Income*Vegetation Index 0.02648  0.03965 0.11430
Price*Vegetation Index -0.11463  0.07805 0.20003
Number of customers 2001
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Table 7: Model Parameter Estimates, Valley of The Moon, California, Alternative 3

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -0.45971  0.02081 0.03161
Constant in the price elasticity formula -1.69362  0.08841 0.08164
Std.dev. of error term 0.36864  0.00136 0.00727
Constant -3.25872  0.19225 0.28066
Average high temp in billing cycle 0.01344  0.00127 0.00157
75th - 25th percentile of temperature in billing cycle -0.01648  0.00181 0.00135
Total precipitation in billing cycle 0.00833  0.00415 0.00510
75th - 25th percentile of precipitation in billing cycle -0.62495  (0.34948 0.38411
Number of people over 18 in house -0.42408  0.02246 0.07900
Number of people under 18 in house -0.05106  0.01306 0.04248
House acreage above 1 acre -0.57542  0.02470 0.06323
Number of bedrooms in house 0.13650  0.01231 0.01886
Price*temp -0.04968  0.00205 0.00316
Price*precip 0.01377  0.00307 0.00703
Price* # of adults 0.56883  0.02682 0.05046
Price* # of children -0.79591  0.05206 0.06941
Price* # of bedrooms -0.97832  0.02689 0.04440
Income* # of bedrooms -0.16968  0.00541 0.01265
Vegetation Index -0.73120  0.27397 0.45455
Income*Vegetation Index 0.18243  0.05531 0.08939
Price*Vegetation Index 0.24278  0.11045 0.29257
Number of customers 2001
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Table 8: Model Parameter Estimates, Valley of The Moon, California, Alternative 4

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -1.06894  0.04600 0.12908
Constant in the price elasticity formula -0.25119  0.03023 0.10559
Std.dev. of error term 0.38464  0.00153 0.00768
Constant -2.93365  0.24219 0.53549
Average high temp in billing cycle 0.06400  0.00144 0.00252
75th - 25th percentile of temperature in billing cycle -0.00882  0.00170 0.00151
Total precipitation in billing cycle -0.02410  0.00508 0.00806
75th - 25th percentile of precipitation in billing cycle -0.35662  0.37857 0.38281
Number of people over 18 in house -0.89945  0.02518 0.07362
Number of people under 18 in house -0.47474  0.01126 0.02177
House acreage above 1 acre 0.25359  0.03194 0.04717
Number of bedrooms in house 0.21446  0.01994 0.04988
Price*temp 0.02068  0.00087 0.00148
Price*precip -0.00223  0.00250 0.00391
Price™ # of adults -0.17142  0.01656 0.04233
Price* # of children -0.84181  0.02932 0.11172
Price* # of bedrooms -0.15807  0.01453 0.03207
Income* # of bedrooms -0.23436  0.01217 0.03275
Vegetation Index 0.89180  0.31415 0.39601
Income*Vegetation Index -0.17431  0.11570 0.18084
Price*Vegetation Index 0.01313  0.04898 0.10758
Number of customers 2001

45



Table 9: Model Parameter Estimates, Cobb County, Georgia, Alternative 1

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -0.47346  0.01992 0.06681
Constant in the price elasticity formula -3.66710  0.27189 0.26784
Std.dev. of error term 0.37927  0.00126 0.00619
Constant -2.52731  0.10800 0.22752
Average high temp in billing cycle 0.00302  0.00067 0.00081
75th - 25th percentile of temperature in billing cycle 0.00174  0.00149 0.00138
Total precipitation in billing cycle 0.00860  0.00538 0.00590
75th - 25th percentile of precipitation in billing cycle -0.41771  0.15956 0.13863
Number of people over 18 in house 0.35078  0.02544 0.03352
Number of people under 18 in house -0.16692  0.01076 0.01507
House acreage above 1 acre -0.03980  0.03392 0.08367
Number of bedrooms in house -0.58047  0.03239 0.13300
Price*temp -0.03324  0.00250 0.00326
Price*precip -0.01598  0.00751 0.02242
Price* # of adults 1.23847  0.08965 0.10416
Price* # of children -0.06708  0.02388 0.04352
Price* # of bedrooms 0.36360  0.03125 0.04763
Income* # of bedrooms 0.12932  0.00458 0.01124
Vegetation Index -0.70405  0.13742 0.24799
Income*Vegetation Index 0.12867  0.02636 0.04715
Price*Vegetation Index -0.29063  0.11312 0.23816
Number of customers 1004
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Table 10: Model Parameter Estimates, Cobb County, Georgia, Alternative 2

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -0.42983  0.01773 0.09463
Constant in the price elasticity formula -1.44802  0.15342 0.24818
Std.dev. of error term 0.37611  0.00137 0.00616
Constant 1.25484  0.24788 1.23824
Average high temp in billing cycle 0.02263  0.00095 0.00190
75th - 25th percentile of temperature in billing cycle 0.00249  0.00149 0.00142
Total precipitation in billing cycle 0.00726  0.00707 0.02870
75th - 25th percentile of precipitation in billing cycle -0.47332  0.15853 0.14164
Number of people over 18 in house 0.18768  0.02118 0.40274
Number of people under 18 in house -0.21237  0.01360 0.04238
House acreage above 1 acre -0.35848  0.03938 0.36731
Number of bedrooms in house -1.83027  0.06737 0.11055
Price*temp 0.02149  0.00186 0.00263
Price*precip -0.00641  0.00765 0.02689
Price* # of adults -0.20770  0.03428 0.27076
Price* # of children -0.08056  0.02348 0.04081
Price* # of bedrooms -0.59325  0.02841 0.09604
Income* # of bedrooms 0.22549  0.00380 0.02329
Vegetation Index -2.53845  0.12222 0.45988
Income*Vegetation Index 0.32370  0.01553 0.05101
Price*Vegetation Index -0.99495  0.10591 0.26858
Number of customers 1004
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Table 11: Model Parameter Estimates, Cobb County, Georgia, Alternative 3

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -0.47201  0.01991 0.06773
Constant in the price elasticity formula -3.66402  0.27188 0.26742
Std.dev. of error term 0.37922  0.00126 0.00619
Constant -2.52625  0.10798 0.22774
Average high temp in billing cycle 0.00301  0.00067 0.00081
75th - 25th percentile of temperature in billing cycle 0.00174  0.00149 0.00138
Total precipitation in billing cycle 0.00857  0.00538 0.00589
75th - 25th percentile of precipitation in billing cycle -0.41796  0.15954 0.13861
Number of people over 18 in house 0.35046  0.02545 0.03356
Number of people under 18 in house -0.16676  0.01078 0.01518
House acreage above 1 acre -0.03902  0.03392 0.08357
Number of bedrooms in house -0.58288  0.03244 0.13540
Price*temp -0.03323  0.00250 0.00327
Price*precip -0.01599  0.00751 0.02242
Price* # of adults 1.23683  0.08960 0.10369
Price* # of children -0.06748  0.02393 0.04380
Price* # of bedrooms 0.36358  0.03124 0.04762
Income* # of bedrooms 0.12946  0.00457 0.01125
Vegetation Index -0.70389  0.13729 0.25017
Income*Vegetation Index 0.12842  0.02630 0.04744
Price*Vegetation Index -0.29156  0.11337 0.23812
Number of customers 1004
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Table 12: Model Parameter Estimates, Cobb County, Georgia, Alternative 4

Parameter Name

Estimate

Standard Error
(Outer Product

Standard Error
(White (1982)

of Gradients) Formula)

Constant in the income elasticity formula -0.72914  0.02782 0.14899
Constant in the price elasticity formula -0.36119  0.05708 0.21913
Std.dev. of error term 0.37954  0.00136 0.00611
Constant -4.68268  0.25160 1.09953
Average high temp in billing cycle 0.03137  0.00103 0.00245
75th - 25th percentile of temperature in billing cycle  0.00150  0.00147 0.00140
Total precipitation in billing cycle 0.02696  0.00985 0.01537
75th - 25th percentile of precipitation in billing cycle -0.43953  0.16596 0.14502
Number of people over 18 in house 0.02226  0.02872 0.08939
Number of people under 18 in house -0.85098  0.02625 0.08457
House acreage above 1 acre -0.13625  0.04505 0.22650
Number of bedrooms in house 0.62558  0.03437 0.25571
Price*temp 0.01155  0.00054 0.00137
Price*precip 0.00728  0.00406 0.00625
Price™ # of adults 0.05633  0.01267 0.02721
Price* # of children -0.71261  0.03440 0.10205
Price* # of bedrooms 0.04260  0.01016 0.07189
Income™ # of bedrooms -0.08357  0.01050 0.08444
Vegetation Index 0.31517  0.34412 1.28492
Income*Vegetation Index 0.03159  0.08563 0.31804
Price*Vegetation Index 0.19165  0.03019 0.05016
Number of customers 1004

Table 13: Non-Nested Test of New Nonlinear Pricing Model Versus Alternative

Price Model

Alt. Nonlinear Price

Utility Alternative Model
Actual Average Alt. Actual Total Average

VoM D.77 4.63 6.24 -1.62

Cobb  6.32 6.86 6.30 5.22

4.72
5.28

Note: Test statistic is asymptotically distributed as a N(0,1) random variable under

null hypothesis.
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Table 14: Revenue Uncertainty and Demographic Information, VoM, New Model

E[Revenue per  sd[System E[Consumption sd[System-wide
month per bill] wide revenue|] per month per bill] consumption]
Demographics $28.97 $926 6.07 TGAL 233 TGAL
drawn from prior
Demographics $29.23 $740 6.15 TGAL 179 TGAL
drawn from posterior
Demographics $29.32 $725 6.18 TGAL 175 TGAL
predicted

Note: TGAL = Thousands of gallons

Table 15: Revenue Uncertainty and Demographic Information, Cobb, New Model

E[Revenue per  sd[System E[Consumption sd[System-wide
month per bill] wide revenue] per month per bill] consumption]
Demographics $95.58 $13119 8.65 TGAL 987 TGAL
drawn from prior
Demographics $63.18 $2265 6.14 TGAL 184 TGAL
drawn from posterior
Demographics $62.79 $2100 6.11 TGAL 172 TGAL
predicted

Note: TGAL = Thousands of gallons
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Figure 4: Histogram of NDVT for Valley of the Moon
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Figure 5: Histogram of NDVI for Cobb County, Georgia
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VOM Posterior bill cycle pair: Price & Income elasticities
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Figure 6: Histogram of Price and Income Elasticities for VoM, New Model
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Cobb Posterior bill cycle pair: Price & Income elasticities

0.2 -

0.15

Frequency
o
—_
!

1

Income Elasticity 0 -8 Price Elasticity

Figure 7: Histogram of Price and Income Elasticities for Cobb, New Model
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VOM Posterior bill cycle pair: Price & Income elasticities
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Figure 8: Histogram of Price and Income Elasticities for VoM, Alternate Nonlinear Price
Model
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Cobb Posterior bill cycle pair: Price & Income elasticities

0.2

0.15

Frequency
o
e

0.05

0.5

Income Elasticity 0 6 Price Elasticity

Figure 9: Histogram of Price and Income Elasticities for Cobb, Alternate Nonlinear Price
Model
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Figure 10: Optimal Price Schedule to Save Water, VoM
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VOM: Consumption Histogram under Current and Counterfactual Price Schedule
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Figure 11: Histogram of Consumption Under Current and Counterfactual Price Schedule,
VoM
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VOM: Consumption Histogram under Current and Counterfactual Price Schedule
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Figure 13: Histogram of Consumption Under Current and Counterfactual Price Schedule,
Self-selected, VoM
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Figure 14: Optimal Price Schedules to Minimum System-wide Revenue Variation, Cobb
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Cobb: Consumption Histogram under Current and Counterfactual Price Schedule
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Figure 15: Histogram of Consumption Under Current and Counterfactual Price Schedule,
Cobb
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Cobb: Optimal Prices to Reduce Revenue Variance, Vegetation Index
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Figure 16: Optimal Price Schedule to Minimum System-wide Revenue Variation, Vegetation
Index, Cobb

62



Cobb: Consumption Histogram under Current and Counterfactual Price Schedule, Vegetation Index
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Figure 17: Histogram of Consumption Under Current and Counterfactual Price Schedule,
Vegetation Index, Cobb
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Figure 18: Histogram of Price Elasticities, Vegetation Index, Cobb
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