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This paper proposes a model of the behavior of an expected profit-maximizing merchant storage owner with the
ability to exercise unilateral market power. The resulting non-linear bilevel optimization problem is transformed
into a single-level stochastic bilinear program using the Karush-Kuhn-Tucker conditions of the lower-level
Independent System Operator dispatch problem. By discretizing the offers and bids of the merchant storage
owner, the problem is formulated as a stochastic disjunctive program. Using the disjunctive nature of the derived
program, a specialized branch-and-bound algorithm that applies a linear quasi-relaxation of the merchant sto-
rage problem is proposed. Our solution algorithm is able to solve the problem in an efficient manner; returning
the charge and discharge strategies for the merchant storage owner that yield the highest expected profits.
Simulations of test systems reveal the various abilities of the merchant storage owner to exercise unilateral
market power. Those include demand withholding, generation withholding and under-use which result in an in-
creased congestion in both space and time when compared to the welfare-maximizing use of storage. Factors
such as uncertain bids by other players, final state-of-charge requirements and arbitrage by other storage players
are investigated. Moreover, numerical results demonstrate the superior computational performance of the
proposed solution algorithm when benchmarked against current practices in the literature.

1. Introduction ahead [8] and real-time [9] energy markets.

Several references cover applications of energy storage in microgrids

Energy storage systems have the potential to significantly improve
the operation of the power system of today [1], especially because of
the ever-increasing generation from intermittent renewable resources
[2]. The applications of energy storage systems are diverse and include
voltage support [3], frequency regulation and synchronous/non-syn-
chronous reserve [4] as well as spatio-temporal energy arbitrage, i.e.
storing surplus energy from renewable sources for later use by loads
[5]. In this manner, storage systems are suitable for integrating wind
power [6] as well as solar power [7] and can participate in both day-
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such as real-time management for renewable integration [10], capacity
optimization considering cogeneration and electric vehicle scheduling
[11] as well as optimal sizing [12] and placement in multi-energy mi-
crogrids [13]. Demand response can also take advantage of the many at-
tractive properties of energy storage [14]. In [15], the authors investigate
the sizing of additional distributed generation and energy storage systems
to be applied in smart households. In a similar fashion, [16] presents a
control algorithm for joint demand response management and thermal
comfort optimization in microgrids equipped with renewable energy
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Nomenclature

Indices and sets

i Index of units

n, m Indices of buses

t Index of time periods

l Index of discrete offer-bid values
w Index of stochastic scenarios

Is Set of strategic storage units

InNs Set of units of non-strategic players
Variables

Dy Generation offer of players

d Demand bid of players

Cu Offered price of players

Srmew Real power transmission line flow
Dinw Real power generation of players
dipw Real power demand of players
Sitw State of charge of storage unit
Bhtw Voltage angle at bus n

A1 Dual variables

12, Electricity price at bus n

X X2y, x5, Binary variables in MILP

z:hs 220 25, Bilinear term intermediate values

by, mh, 1,  Bilinear term intermediate values
wobos Spanning variables

Parameters

bum Susceptance of a transmission line
Dy Net real power demand at bus n

¢ Variable cost of units

P Probability of scenario w

Si, S; Charge limits of merchant storage

s? Initial state of charge

Fum Em Real flow limits of a transmission line
0,, 6, Voltage angle limits on bus n

P, P Real power generation limits of units
D;, D; Real power demand limits of units

Cpi Node-unit connection matrix

P, D, G Discrete offer-bid values

np, Np, Nc Number of possible discrete values
M?P, MP, M  Sufficiently large constants

D> By Lower/upper bounds of p,

e, el Charging/discharging efficiencies
Operator

I(condition) “If” operator

sources and energy storage units. Vehicle-to-grid enables plug-in electric
vehicles to have bi-directional power flows once they are connected to the
grid. Grid-tied applications of electric vehicle storage have recently been
gaining ground where the operation of electric vehicles can for example be
coordinated with volatile renewable energy sources [17] or used to supply
a distributed spinning reserve according to the frequency deviation at the
plug-in terminal [18]. In [19], the authors propose a game-theoretic model
to understand the interactions among electric vehicles and aggregators in a
vehicle-to-grid market. Moreover, [20] presents a control strategy for
large-scale electric vehicles, battery energy storage stations and traditional
frequency regulation resources involved in automatic generation control.

Energy storage includes a variety of different technologies, such as
hydro, chemical, hydrogen and battery. Battery storage can be further
divided into two types: (i) large-scale transmission-level battery storage
and (ii) small-scale distribution-level battery storage. This paper focuses
on a merchant battery storage portfolio that might include large-scale
transmission-level battery storage units, aggregated small-scale battery
storage units or even a mixture of both."

In the literature, battery storage systems are often considered to be
price takers due to their lower installed capacity compared to tradi-
tional generators. An example of this is [23] which analyzes two models
for the hourly scheduling of centralized and distributed Electric Energy
Storage (EES) systems. The results compare the impacts of utilizing the
two EES models on system operations and quantify the operation

! Merchant battery storage portfolios of both the aforementioned types cur-
rently exist in practice where several countries have installed large-scale bat-
teries for their grid. In November 2017, Tesla installed a 100 MW, 129MWh
battery system in South Australia and the UK had a 50 MW lithium-ion grid-
battery installed in Hertfordshire in 2018. According to a 2019 market insight
from THS Markit, deployments of grid-connected energy storage in the United
States this year are expected to amount to 712 MW, representing a near-dou-
bling from 376 MW in in 2018. Moreover, IHS Markit expects over 2 GW of
energy storage to be paired with utility-scale solar photovoltaic (PV) systems
from 2019 to 2023 in the United States [21]. In addition to storage in con-
junction with utility-scale solar, aggregating small-scale distribution-level bat-
tery storage is currently an accepted concept [22].

benefits of EES. The authors of [24] consider the case where a group of
investor-owned independently-operated storage units seek to offer en-
ergy and reserve in the day-ahead market and energy in the hour-ahead
market. The particular system investigated has a significant portion of
the power generated from intermittent renewable energy resources and
therefore a stochastic programming framework is used to account for
the fluctuating nature of the market prices. Reference [25] looks at how
battery storage could increase its profitability by providing fast reg-
ulation service which takes advantage of the battery’s fast ramping
capability. The authors of [26] study the participation of small energy-
storage units in electricity markets through aggregators which are
modelled as price-takers in the market.

It is expected that a decrease in the capital cost of energy storage
systems will eventually spur the deployment of large amounts of energy
storage [27]. This raises the issue of market power. Exercise of uni-
lateral market power® is a concern in today’s electricity markets and
numerous mathematical models have been developed to study such
behavior [28]. The author of [29] quantifies the impact of the exercise
of unilateral market power by a large hydroelectric generation facility
in the western U.S. The author develops a model which solves for a sub-
game perfect equilibrium of a multi-period Cournot game between
strategic producers, one of which owns hydroelectric capacity with the
ability to store water. The model results find that the large hydro-
electric producer reduces output in peak demand hours and shifts this
output to the off-peak demand hours, relative to the case in which the
hydroelectric producer behaves as a price-taker. Reference [30] models
the offer behavior of a plant owner maximizing its expected profit and
with the ability to exercise unilateral market power. The plant owner is
assumed to choose its price and quantity offer pairs to maximize the
expected value of the realized profits that it would earn across a dis-
tribution of scenarios for system demand and the offer behavior of its
competitors. These are the two major sources of uncertainty the plant
owner faces when it submits its offers into the short-term market. In
[31], the framework from [30] is used to test the assumption of

2This term is generally used in the economics literature while the terms
strategic or strategic behavior are more common in the engineering literature.
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expected profit-maximizing offer behavior in a short-term electricity
market and the results show no evidence against it.

The issue of unilateral market power is especially interesting in the
case of energy storage because storage units can act both as generators
and loads. A portfolio of storage units is able to influence the market
price in multiple ways; by creating congestion in both space and time,
by withholding generation as well as by withholding demand. Looking
at the literature, relatively little focus has been put on studying large,
price-maker storage portfolios. However, recent work such as [32]
evaluates the impact of strategic behavior of an independent trader
operating energy storage systems while the authors of [33] assess the
various consequences, including those of market power, of storage via a
complementarity model of a stylized Western European power system.
Reference [34] studies how storage, operating as a price maker, may be
optimally operated over an extended period of time. The authors of
[35] explore the implications of different bid structures on the strategic
behavior of a storage owner that participates in the wholesale market
and is able to influence market prices. Four bid structures are analyzed:
(i) simple quantity-based bids, (ii) simple price-based bids, (iii) price-
quantity pairs bids and (iv) complex bidding in which the energy sto-
rage system owner provides full information of its technical char-
acteristics through the bids. In [36], the authors explore the integration
of large-scale, grid-level energy storage into wholesale electricity
markets and conduct a comparative analysis on three natural market
mechanisms. Reference [37] addresses the optimal bidding strategy
problem of a commercial virtual power plant which includes battery
storage systems. In [38], the author proposes an optimization frame-
work to coordinate the operation of large, price-maker, geographically
dispersed storage systems in a nodal transmission-constrained market.

In line with the above references, this paper studies the operation of
a profit-maximizing merchant storage owner with the ability to exercise
unilateral market power. The paper is motivated by the recent FERC
order to allow medium to large scale storage resources to directly
participate in the wholesale market (either through direct bidding or
self-scheduling). Worldwide there has also been a growing trend for
more storage resources to participate in wholesale markets. The point of
the model is to understand what could happen in the future when
storage capacity is expected to increase and the potential of one firm to
own a significant amount of storage is likely. The problem formulation
is a bilevel one where in the upper-level problem, the merchant storage
owner makes offers and bids to the market in order to maximize its
expected profit, subject to the lower-level optimal dispatch problem of
the Independent System Operator (ISO) for a variety of possible sce-
narios. The main contributions of this paper are:

1. A derivation of a stochastic disjunctive program model for finding
the optimal offer-bid strategy of a merchant storage portfolio which
maximizes the expected profit over several possible market sce-
narios. The derivation paves the way for linearization of the original
bilevel, non-linear model via discretization of the offer-bid values.
Unlike the existing bilevel models found in the literature for cap-
turing the behavior of price-making storage, this novel derivation
allows a linear quasi-relaxation of the problem, which is required for
solving the problem in an efficient manner.

2. A Specialized Branch-and-Bound (SBB) solution algorithm that ap-
plies a linear quasi-relaxation which significantly reduces the com-
putational requirements when solving the merchant storage pro-
blem. Moreover, the proposed disjunctive formulation and solution
algorithm avoid the computational complexity tied to the traditional
Big-M linearization of the complementary slackness conditions of
the lower level problem.

3. Both the proposed stochastic disjunctive programming model and
the SBB solution algorithm are benchmarked against current prac-
tices in the literature for modeling and solving these types of pro-
blems.
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The rest of the paper is organized as follows. Section 2 covers the
mathematical model where the physical constraints of the system are
listed and the market players of the system are introduced. A stochastic
bilevel merchant storage problem is then derived and using the Karush-
Kuhn-Tucker (KKT) conditions as well as bid discretization, it is re-
formulated as a single-level stochastic disjunctive program. Section 3
derives a specialized solution algorithm that applies a linear quasi-re-
laxation of the merchant storage problem and solves the problem in a
computationally efficient way. Sections 4 and 5 show an illustrative
example and numerical simulations, respectively, of test systems that
confirm the performance of the proposed method. Further technical
analysis is carried out in Section 6, where factors such as uncertain bids
by other players, final state-of-charge requirements and arbitrage by
other storage players are investigated. Section 7 concludes the paper.

2. Mathematical model

The market is composed of two types of market players; a single
large merchant storage owner whose units are in the set 75 and tradi-
tional generators whose units are in the set 7M. Index i represents all
units in the market. The production of each player at time t, scenario w
is represented by p,,, and the demand of each player is represented by
diny.- The production and demand are limited by the lower and upper
limits (P;, B) and (D;, D;), respectively. The charging power of a storage
unit is therefore represented by d;,, (unit acts as a load) and the dis-
charging power of a storage unit is represented by p,,, (unit acts as a
generator).”> The storage level is represented by s, and the storage
capacity is limited by the lower and upper limits (S;, S;). The initial
state of charge is represented by S’. The storage owner chooses its offer
price and quantity pairs to maximize its expected profits. The storage
owner computes the expected profits associated with a combination of
offer price and quantity pairs by solving a lower-level ISO market
equilibrium several times for a variety of possible scenarios. The ex-
pected profits are the probability weighted sum of these realized profit
outcomes. The ISO is assumed to solve an optimization problem mini-
mizing the as offered cost of generation and therefore the complete
optimization problem that the merchant storage owner solves is a bi-
level one.

2.1. Stochastic bilevel program

The bilevel merchant storage problem is given in (1).

m%Ximize Z Py Z Cni/lr(l?v)v (P,-tw - ditw]

Bigsdiv Givie 1S ierSt,w n (1a)
subject to:
D,di =0,V (i € I, (1b)
Pi<P, <P, Di<dy <D,V (i € I, 1o
1
Siw = Sie—1w + STt = 1| + € diny — 5Py ¥V | i € T |tw,
§ ad)
Si < Siw < S, V(1 € TStw, (1e)
8P < sitw, V (i € TSw, (1D

3 Note that storage is merely treated as a power system element that can both
produce and consume electricity. Therefore the production and demand of
storage are represented with the same symbols as any other unit in the system,
Diny and din,. This is done in order to simplify the lower level problem, that is
introduced in the next subsection, where both the objective as well as the
constraints can be written much more compactly. The different kind of players
in the market are nevertheless differentiated using the sets I for strategic
storage and I for traditional generators.
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where {/I,,tw, Dinw» din}€

arg] minimize Z Diow — duw]at

Pi[w’diwv’fnmnvvennv it (lg)
subject to:
f;zmtw = —bum Bnnw — Omaw): /lnmtw, vV nmiw, (1h)

n#Em
z (Pﬁw - dilw] Chi — Z fnmtw = Dppy: Ar%%;s v ntw,
m

; (1i)

Eum < fumn < Fimt Mg Ky ¥ AW, aj
On < B < Ot w0, i,V ntw, 1K
Pi < Py, < Byt i) ), Y itw, an
Di < diny < dit ), 1), ¥ itw}. (1m)

Uncertainties in the market are captured by probabilistic scenarios,
indexed by w with probabilities p,,. The main source of uncertainty is
the net demand D,;,, which depends on the intermittent generation.
Scenarios are constructed based on forecasts of the demand and inter-
mittent generation. Other uncertainties, such as uncertainties in the
bids of other generators, can also be captured through the use of sce-
narios. In the upper-level problem, the merchant storage owner max-
imizes the expected profit over the time horizon and the different sce-
narios. The resulting solution is the generation offer quantity p,, the
demand bid quantity dy and the price ¢;. Note that they are in-
dependent of the scenarios. Moreover, note that for i € 7%, symbols
Dy dy, and &, are upper-level variables but are considered to be para-
meters for i € 7™, since the offers for the non-strategic players are
fixed to their installed capacities (P, D;) and their true cost parameters
(c;). For each scenario that the merchant storage owner takes into ac-
count, the ISO is assumed to solve a deterministic model in which the
particular scenario is assumed to be the only one. The term ) Cud®,
in the upper-level objective function represents the nodal price that
player i is exposed to. 12, is the nodal price and C,; is a binary node-
unit connection matrix. Constraint (1b) makes sure that in each time
period, the storage units submit offers or bids to the market either as a
generator or as a load [38]. The offer-bid values p,, and c?i[ must confine
to the physical limits of each unit (1c). As noted earlier, the bids of the
non-strategic generators in the market can however be assumed to be
uncertain and this uncertainty can be captured by having several sce-
narios for their bids, indexed by w. This entails that the
objective  function of the lower-level problem becomes
Ziels,[ Dy — dinw) G + ZiE]Ns’tpime,-,w, where ey, is the scenario de-
pendent bid of the non-strategic generators. It is then straight forward
to update the KKT conditions given in Section 2.2 accordingly. The
simulation in Section 6.1 shows this modeling aspect. The energy bal-
ance of the storage units is captured by (1d) and the energy limits by
(1e). Parameters ¢ and € represent the charging and discharging ef-
ficiencies, respectlvely. Choosing a round-trip efficiency of less than
one makes constraint (1b) redundant since there is no point in si-
multaneously charging and discharging. Constraint (1f) makes sure that
the storage level at the end of the planning horizon should be no lower
than at the beginning. Such a constraint may be very important when
scheduling successive planning horizons. Upper case T denotes the last
time period of the planning horizon. Thestorage owner is considered
responsible for the energy limits so those constraints appear in the
upper-level problem [38]. The lower-level ISO dispatch problem
minimizes the as offered generation cost in the system while taking into
account the power flow constraints (1h) and the energy balance on each
bus (1i). There are also lower and upper limits on the real power flows
Sumew (13), the voltage angles 6,4, (1k) and the dispatch values p,,, and
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diny (11)—(1m). The lower-level dual variables are given after the colon. 4

The formulation above assumes that the merchant storage owner
submits price-quantity pairs to the market, that is offers or bids that
contain both price and quantity. The model in (1) can also capture self-
scheduling, e.g. offers or bids without a price component, if minor
changes are made to the formulation. Specifically, the lower-level ob-
jective function becomes Zu (Diny Cit — dinwllyy) where for all storage
units the submitted generation offer price ¢;; is zero, and the submitted
demand bid price &I}, is a sufficiently high constant [38].

The above model is in general very hard to solve because: (i) it is bilevel,
(ii) it is non-linear and (iii) transmission congestion implies that small changes
in offer behavior can create large changes in realized market outcomes.

2.2. The proposed stochastic disjunctive program
In order to compose a single-level stochastic optimization problem from

the stochastic bilevel program given in (1), the KKT conditions are derived
for the lower-level problem. The stationary conditions are given in (2).

#ritw = AV('B[W - /1’('%‘?"1(" # m) - #'51) + Il(fyz =0,V nmtw, (za)
BGZLW - Z [b"”"lﬂmrw ~ b ] ) + 1) = 0,V naw, o)
apm % [Cm/ly%)] ul([a,) + /‘x([wé) = Gy, V itw, "
Bdlrw zn: [Cn’/lr(l?o] + #,533 - #fngv) = Cir, V itw. o

All complementary slackness conditions are collected in the strong duality
condition given in (3). °

“#Note that storage degradation is not modelled directly in the model but such
details could easily be incorporated. Storage degradation is important in the
long-term, as mentioned in [39,40], since frequent charge-discharge cycling of
batteries incurs extra operational costs and it may accelerate battery depre-
ciation. In this paper, we have considered a short-term offer-bid model for
battery storage where the degradation is not a key modelling aspect and it is
therefore disregarded (as is also the case in references such as [35,38]).

5 Since the lower-level problem is a linear program, one knows that its duality
gap is zero and therefore the strong duality condition is equivalent to the
complementary slackness conditions. This can be seen by looking at the fol-
lowing LP primal and dual pair

minimize b7y
b (P) s. L. ATy
0 y=0.

maximize  ¢Tx
zc (D)

Let s = b — Ax > 0 denote the vector of slack variables and t = ATy — ¢ > 0
denote the vector of surplus variables. One can therefore write

cx =Ty —)'x
=yTAx — t"x
=yT(b—s)—tTx
=yTh — yTs — tTx.

At optimality (x*, y*, s*, t*), strong duality implies
cTx* = bTy*,
S0
@*)TS* + ([*)TX* = 0’

which gives the complementary slackness conditions

09" = 0, (Yt = 0,

since y*, x*, s*, t* > 0.
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ltw)clt_ Zn [AnthﬂfW + Zn m,t [Mnmtw nm 'urirr%nv* nm)
+ T 100, - 130, + T, (OB, — 1S P

+ ZL[ [ﬂ(s)d (7)D] v w

itw ltw =

Zi,[ (pitw -

3

There are bilinear terms that appear in the objective function (1a) as

well as the strong duality constraint (3). These terms are

2 Cm/lmw i — itw)» ultwp” and yl(n?d Using (2c), (2d) and the

complementary slackness (CS) conditions for constraints (11) and (1m),
the objective function can be rewritten as can be seen in (4).

2 P Z Coidin By — din)(2€),_(2d)

ierS w
Z low i[w - lfW)Clt + “ztwpltw #l(t?v)pltw + #1(7)(1”“’ - 'ul(t?v)dm“](c;s)
ierS tw
> Pl Py — din)e + uOP — pOB, +pD; — pPdy 1.
ierS,Lw R — —
”ltw Titw Titw
(€]

diny) Cir, /"i(ls,)ﬁ;
and u(s)d,, where each term is a continuous variable multiplied by an
offer-bid value. We assume discrete offer-bid values which can take
values from a  possible pool of ordered values
p, €{P. B, ..B,}, dy€{Dy, Dy, ..,D,;)} and & €(C,Cy ....Cpc)-
Therefore, one can rewrite the bilinear terms in the following dis-
junctive manner:

The bilinear terms have therefore been reduced to (p,, —

©8 _\1,©p
M Dy Vuuw P,
u®d, = \/HL ®p,

A
P — diw)Ct = \/(in = dinw) G,
1=1 %)
where the disjunction is represented by the disjunction (OR) operator
\/. One can then rewrite the whole stochastic bilevel program as the
stochastic disjunctive program (6).

ne =
maxgmize Z Pl V| Pigw — diew |G

ierS,w =1
D ~
Iu(S)p _ VM(G)P[ + F‘lmD _ \/‘ui(tWS)D’:l
1

subject to:
(1b)-(11), (1h)-(1m), (2a)-(2d),
(3) rewritten with (5),

1) 2) 3) @ <
Humow Fomow> Hany? #ntw <0,

(5) (6) ) ®) <
Hinw > Mings Miny» 'ul[W <0, (6)
where the set of decision variablesis Q = {p,,, d A,,, Cits Piw> Ditws Sitw> Onews
1 2
Fumows Anmows Antws Fuss Pt B B P P Higys H)}. Program
(6) can be solved by the binary expansion approach [41]. Taking the
y Y exp PpP g
disjunctive term \/l””1 ,Lll(é)Pl as an example, one can introduce binary

variables x;; where Zl=1 i = 1 and write the disjunction as:

— MPxh <zh, < MPxh, v itw,
—MP(1—xip) <z — EOP<MPQ = xi), ¥ itlw,

where M? is a sufficiently large constant, and z}, are continuous
variables that are enforced to take the value of the bilinear term for a
single index L The disjunctive term can then be written as

w OB = Y" 24, and the offer value as p, = 3,,*, Pxj;. The same
approach can be used to rewrite the other disjunctive terms. Additional
constraints p, < Pa; and dlt D;(1 — a;) where a; € {0, 1} are in-
troduced to ensure that in each period, each storage unit participates in
the market either as a generator or as a load. This formulation allows
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the merchant storage problem to be written as a mixed-integer linear
program (MILP) and the standard branch-and-bound algorithm can be
used to solve it. A continuous linear relaxed optimization problem is
then formed by allowing the binary variables to be continuous in the
range from zero to one. Branches are created by finding a non-binary
solution variable and setting it to zero at one node and to one at the
other. The problem with the MILP formulation is however that it con-
tains a large number of binary variables and the choice of M?, MP and
MC affects the performance of the solver. To tackle these shortcomings,
following [41] we propose an alternative way to deal with the bilinear
terms. The approach introduced in [41] was originally developed for
the nonlinear and discrete truss design problem of finding the optimal
placement and size of structural bars that can support a given load. The
authors found that it can solve substantially larger problems than using
mixed integer programming and the approach has been shown to be
superior for several engineering design problems [42,43]. The quasi-
relaxation technique that is the basis for the approach in [41] was later
generalized in [44]. The approach is distinguished by the following
elements:

Logic-based branching. The branch-and-bound procedure is a logic-
based approach that dispenses with integer variables and branches di-
rectly on logical disjunctions as opposed to MILP approaches, which
branch on integer variables. The two main advantages are that (i) it
yields smaller subproblems at the nodes of the search tree, due to the
absence of integer variables and (ii) it allows the use of a very effective
branching rule that is not possible in an MILP context.

Nontraditional relaxations. The approach uses a relaxation other than
the traditional continuous relaxation of an MILP. The MILP model has
the advantage that the continuous relaxation is always readily avail-
able. However, the quality of the relaxation does not justify the over-
head of including integer variables. The disjunctions used in the pro-
posed approach do not have useful linear relaxations; nevertheless, the
logic-based framework permits the use of a linear “quasi-relaxation” of
the nonlinear problem at each node. It provides a lower bound on the
optimum analogous to that of the continuous relaxation in an MILP.

In the mixed integer linear formulation, each of the offer-bid values

is expressed as a convex combination of discrete values. Instead of such
a formulation, we propose that only two discrete values are used for the
offer-bid values; a lower bound and an upper bound. Taking p,, as an
example, p, and p, represent the lower and upper bounds, respectively.
A continuous variable y/ is introduced to span the range of p,:
B =py + Pl -3, 0 <y <1 @)
This means that if yif’ = 0, p,, will take the value of p;, and if yif’ =1,p,
will take the value of p,. If 0 < W <1, p, will take a value that is
between the two bounds. Fig. 1 illustrates of how the range of p, is
spanned by the variable y’ using the linear combination of the lower
bound p, and the upper bound p;,. The disjunction is enforced by the
constraint

5 P, = rl_»%
lyl[fztyit +pit(1 _yit)_Pl]' ®

H
+o

P
Yir

Range of pj, spanned by yi

Fig. 1. An illustration of how the range of p,, is spanned by the variable y’
using the linear combination of the lower bound p, and the upper bound p;,.
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The continuous variable ui(n? that appears in the disjunctive term is then

represented by the sum of two values

©® _ 6~

(6)+
Hinw = Miny

+ Higy s )]
and the bilinear term 1{® 5, can be written as
Titw = Qi+ #igy B+ P =301 10)

The reason for splitting /,ti(ni) up in this manner will become clear when
the quasi-relaxation is derived in (12). The reformulation is equivalent
for /,tigﬁ))c?,-t and (p,,, — diw)C resulting in 7, and 7§, respectively.
Subsequently, one can write the stochastic disjunctive program as given
in (11).

maxgmize Z Pu [T + M) Pi = Ty + 1) Di = 7,
ierSLw

subject to:

(1b)-(1), (1h)-(1m), (2a)-(2d),
(7)-(10)[Equiv. for /,cl.<[wg)c/l\l-[and(pi[w
(3) rewritten with 7%, 72 7S,

@ 2) 3) (4)
'unmtw’ 'unmtw’ 'untw’ 'untw < 0’

© O O 6
it > P> Minw> Hing < 05 (€8]

= dinw)Cul,

where the set of decision variables is Q = {p,, di, Ci, Piyy» dinw

(1) 2) 1 2 3 4 5 6 7 8
Sitws Ontws S At At Hs K Hos Ky Hios i)y ), 483

The stochastic disjunctive program (11) can be solved directly by
applying a specialized branch-and-bound solution approach that was
proposed in [41]. The disjunctive formulation allows one to branch on
the range of offer-bid values instead of binary variables. As an example,
if an offer p, can take values in the set {0, 10, 20, 30, 40, 50} MW, one
can enforce the constraint 0 < p;, < 20 in one branch and the constraint
30 < P, < 50 in the other. In order for such a branch-and-bound ap-
proach to work properly, one needs a relaxed optimization problem to
give a upper bound on the objective value. Unfortunately, the
straightforward continuous relaxation of (11) is both non-linear and
non-convex and does therefore not provide a suitable way of obtaining
an upper bound. It is however possible to obtain an upper bound by
applying quasi-relaxation.

Definition 1. For a given constrained maximization problem P, a problem
Q is a quasi-relaxation of P if for every feasible solution of P with objective
value equal to v, there is a feasible solution of Q having an objective function
value greater than or equal to v. The optimal value of Q is an upper bound on
the optimal value of P.

One can derive a quasi-relaxation as follows. Looking at the sto-
chastic disjunctive program given in (11), everything is linear except
for (1b) and the constraints given in (8) and (10) as well as their
equivalents for /Jiﬁ)gn and (p,,, — dinw) Gy First, we drop constraint (1b)
which will be dealt with directly in the solution algorithm in Section 3.
Then consider the following linear constraints in (12) which are ob-
tained by dropping the disjunctive constraints in (8) and rewriting
constraints (10). M? represents a sufficiently large constant. The con-

straints for ,u(g) 3“ and (p,,, — din)C; are equivalent.

itw

P 6)— ©)+

Tliow = PyMing  + PieMipy > (12a)
- My < p” <0, (12b)
- MP(L—y)) S pgt <0, (120)
[Equivalent for /,tig?g,-tand(pm — ditw) G- (12d)

Remark 1. Let (11Q) denote the optimization problem that results from
taking problem (11), dropping constraint (1b) and replacing constraints (8)
and (10) as well as the equivalent constraints for the other bilinear terms
Mi(tws)gu and (p,,, — dinw) e With constraints (12).
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Lemma 1. Problem (11Q) is a linear program and a quasi-relaxation of
problem (11). See Appendix for proof.

Lemma 2. If f)‘iﬁi, =0,V (i € %1, and each yF, yP, y is binary in a

solution of (11Q), that solution is feasible in (11). See Appendix for proof.

3. Solution algorithm

Lemmas 1 and 2 can be used to derive a Specialized Branch-and-
Bound (SBB) solution algorithm that solves the merchant storage pro-
blem (11). The SBB algorithm differs from the standard branch-and-
bound algorithm (BB) used to solve the binary expansion MILP model in
the following aspects:

1. The SBB algorithm branches on the lower and upper bounds of offer-
bid values (P> Pi)s (dus d), and (¢, ;) instead of branching on
binary values in the BB algorithm.

2. The SBB algorithm uses the quasi-relaxation model in (11Q) to find
valid upper bounds, while the BB algorithm uses a linear continuous
relaxation by allowing the binary variables to be continuous in the
range [0, 1].

The solution algorithm is shown in Algorithm 1. In the algorithm,
variable X, represents any of the offer-bid values p,,, 3“ or ¢ in order to
simplify the algorithm and it is accompanied by the corresponding
spanning variable y;. For clarity, sets X and X include all lower and
upper bounds for all of the offer-bid values for all i and t. The algorithm
can branch on any single offer-bid value.® In order to make sure that the
merchant storage owner participates in the market either as a generator
or a demand, the following feasibility cut is applied when a branch is
created. Whenever the algorithm branches on a single offer quantity p,,
and a branch is created where the lower bound p,, is greater than zero,

the corresponding demand bid dy, is set to zero in that branch. Similarly,
whenever the algorithm branches on a single bid quantity d, and a
branch is created where the lower bound d;, is greater that zero, the
corresponding generation offer quantity p, is set to zero in that branch.
This enforces constraint (1b).

Algorithm 1. The SBB algorithm with linear quasi-relaxation.

Input : Linear quasi-relaxed problem (11Q) and discrete values {Py, Py, ..., Pnp},
{D1, Da, ..., Dnp} and {C1, Ca, ..., Cng ).
Set lower and upper bounds (E,t.ﬁ,t) = (Pbpnp): (djy, dir) = (f)l-,Dnn) and
(cigrTit) = (C1,Cng) -
Set LB = —oc0.
Branch(X, X).
if LB = —oo then
| Problem is infeasible.
else
| sol* is optimal for (11).
Function Branch(X,X)
if (11Q) has a feasible solution sol with objective z > LB then
if some yj ¢ {0,1} and z;, # Ty then
Let X; be the largest value in the set {X1, X2, ..., X,y } that is smaller
than gﬁyﬁ + T (1 — yff)
(

Branch(X, X"), where X is identical to X apart from that F;; = X;

Branch(X', X), where X" is identical to X’ apart from that z;, = X/Jrl

else
| Let LB =z and sol* = sol with & = 2,y +Fu(1 - y}).

Output: Optimal solution sol*.

6 Since branching terminates when the y’s are binary, convergence is ensured
just as is the case with the standard branch-and-bound algorithm.
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4. Illustrative example
4.1. Price-quantity bidding and offering

For the illustrative example, a 5-node system is used. The system is
based on the PJM 5-bus system of the MATPOWER package [45]. The
following changes have been made to the system in order to make it
suitable for illustration:

1. A generator on bus 1 has been replaced by a wind farm on bus 3
with an installed capacity of 300 MW.

2. Two merchant storage units with an installed generation/demand
capacity of 100MW and a storage capacity of 400 MWh each have
been connected to buses 3 and 4, respectively.

3. All transmission lines with unlimited capacity in the original system
have a capacity of 400 MW.

4. The marginal cost of generator 3 has been increased from $40/MWh
to $60/MWh.

The single-line diagram of the illustrative example is shown in
Fig. 2. Generator data are given in Table 1.

The merchant storage owner optimizes its operation over a horizon
of 4 time periods. The variable cost of the merchant storage units is
considered to be negligible and their round-trip efficiency is considered
to be 100%. The merchant storage owner submits price-quantity pairs
to the market with a price of either 0$/MWh or 50$/MWh as well as
quantity of either 0%, 50%, 75%, or 100% of the 100MW installed
capacity. The bus loads are increasing over the horizon and are assumed
to be known deterministically. In order to add stochasticity to the
system, there are 3 equiprobable scenarios possible for the wind farm
connected to bus 3 (1:1low, 2: medium, 3:high). In all scenarios the wind
power production is decreasing over the horizon. The total load is
considered to be the residual load after the wind power has been de-
ducted from the bus loads.

Fig. 3 shows the charging and discharging (red) of the merchant
storage units as well as their submitted offer-bid values to the market
(black). For comparison, the figure also shows a benchmark case where
the ISO controls the dispatch of the storage units completely (blue).
Lastly, the figure shows the price deviation at the corresponding buses
between the benchmark case and the strategic case (green).7

The results of the illustrative example show various types of stra-
tegic behavior from the merchant storage owner when compared to the
benchmark case where the ISO completely controls the dispatch of the
storage units. Some empirically relevant takeaways from the illustrative
example are the following:

Demand withholding: The units withhold demand in periods 1 and 2
by bidding a fraction of their demand capacity. This results in a de-
crease in the price compared to the benchmark case on both buses in
period 1 (for scenarios 2 and 3) which means that the storage units can
charge at a lower price. This behavior also results in less stored energy
in periods 3 and 4, which helps to drive up the price during those
periods.

Generation withholding: In period 3, both units withhold their gen-
eration capacity. Furthermore in period 4, unit 6 withholds its gen-
eration capacity. This behavior results in a price increase compared to

7 The results for the benchmark case show how the ISO dispatches the storage
units differently depending on the particular scenario. The merchant storage
owner however computes an expected profit-maximizing offer strategy that
explicitly accounts for the fact that the storage owner does not know which
scenario will actually occur at the time when the price and quantity bids are
submitted. In other words, the storage owner has to bid to the market before the
particular scenario materializes, with the aim of getting the highest weighted
average profit from the three scenarios. This is evident in the strategic case
where the dispatch is the same for all scenarios, corresponding to the best
strategy on average, for all scenarios.
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the benchmark case and therefore a higher expected profit for both
units.

Portfolio effect: The abovementioned generation withholding of the
units also shows a portfolio effect where the actions of one unit benefit
the storage portfolio as a whole.

Increased profit: Table 2 shows the profit of the generating units over
the horizon. The expected profit of the storage portfolio over the three
scenarios and four periods is $5846.4. The last column shows how the
expected profit of the generators compares with their expected profit
from the benchmark case. The strategic actions of the two storage units
result in an expected profit that is more than double the expected profit
of the benchmark case ($2702.1). Moreover, the strategic actions of the
storage units increase the expected profit of all of the other generators
apart from generator 3 and the wind farm. This is because the storage
owner manages to decrease the prices somewhat when there is high
wind power production and increases the prices when there is lower
wind production.

Under-use: While the expected profit is increased, the expected
amount of energy sold by storage is around 25% less in the strategic
case than in the benchmark case; storage is under-used compared to the
welfare-maximising use. In the benchmark case, the ISO flattens out the
prices to minimize the generation costs. When the storage portfolio is
controlled strategically, the owner tries to maintain the price difference
while finding a trade-off between sold energy and price.

4.2. Self-scheduling

In this case the storage owner submits self-schedule bids and offers,
that is without a price component, to the market instead of price-
quantity pairs. The SBB algorithm is run again for the illustrative ex-
ample where the merchant storage owner is allowed to submit self-
schedule offer-bid values of 0%, 20 %, 40 %, 60 %, 80% or 100 % of the
installed capacity which for both units is 100MW. For this case, the
expected profit of the storage portfolio is $5815.0.

4.3. Self-scheduling with an increased number of scenarios

We simulate the same self-schedule case as before; however, the
number of wind power scenarios has been increased to 9. The profit of
the benchmark case is $2173.1 but is increased to $5672.9 for the
strategic case.

5. Numerical simulation

This section shows numerical simulations of larger test systems
along with a comparison of the generation cost for (i) the case without
storage, (ii) the case with competitive storage as well as (iii) the case
with strategic storage. Lastly, computational comparison demonstrates
the superior performance of the proposed solution algorithm when
benchmarked against current practices in the literature.

@

5 w—
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LDy LDo LDs Gg

Fig. 2. The single-line diagram of the illustrative example.
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Table 1

Generator data for the illustrative example.

Unit # Type P,/ D; [MW] Cost, ¢; [$/MWh] Bus
1 Dispatchable 40/0 15 1
2 Dispatchable 520/0 30 3
3 Dispatchable 200/0 60 4
4 Dispatchable 600/0 10 5
5 Storage 100/100 0 3
6 Storage 100/100 0 4
7 Wind 300/0 0 3
Table 2

Total profit by scenario as well as expected profit of the generating units over

the horizon.

Unit # Profit [$]
w=1 w=2 w=3 E[Profit] AE [Profit]

1 2933.7 2597.5 2597.5 2709.6 947.3

2 13932.9 139329 13932.9 13932.9 9288.6
3 0 0 0 0 0

4 0 3000.0 0 1000.0 1000.0
5 1339.7 2089.7 2339.7 1923.0 841.0
6 3008.6 4255.7 4505.7 3923.4 2303.3
7 5169.9 8539.7 15879.4 9863.0 —451.5

5.1. IEEE 24-bus system with transmission constraints — self-scheduling

In this case, we run the SBB algorithm on the IEEE 24-bus, 32-unit

system where the two 400 MW nuclear units in the system are assumed
to be off-line. The simulation is carried out for 4 periods, 3 scenarios
and there are two merchant storage units in the market (units 33 and
34); both of which have a storage capacity of 1000MWh. They are
connected to buses 13 and 15. There are 3 equiprobable scenarios
possible for a 400MW wind farm connected to bus 17 (1:high,
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2:medium, 3:low). The units are allowed to submit self-schedule offer-
bid values of 0%, 25%, 50%, 75% or 100% of their 200 MW installed
capacity to the market. The results are represented in Fig. 4 where one
can see how the units are able to strategically decrease the system price
substantially during the first 2 periods as well as increase the price in
the third period. These strategic actions increase their expected profit
over the 3 scenarios and 4 periods from $655.9 in the benchmark case
to $3856.0 in the strategic case.

5.2. IEEE 24-bus system without transmission constraints — self-scheduling

The SBB algorithm is run on the same IEEE 24-bus system without
considering transmission constraints. The simulation is carried out for
12 periods and there is a single merchant storage unit in the market
which has a storage capacity of 1000MWh. The unit is allowed to
submit self-schedule offer-bid values of either 0%, 25%, 50 %, 75 %, or
100% of its 300 MW installed capacity to the market. The unit is able to
strategically apply generation withholding in order to increase the
system price substantially and increase its expected profit from $7983.6
in the benchmark case to $40049.9 in the strategic case.

5.3. IEEE 118-bus without transmission constraints — price-quantity bidding

Finally, the SBB algorithm is run on the IEEE 118-bus system
without considering transmission constraints for a horizon of 8 periods.
A 2000 MWh storage unit submits price-quantity pairs with a price of
either 0$/MWh or 40 $/MWh as well as quantity of either 0%, 50 % or
100% of its installed capacity of 600 MW. The strategic actions of the
player increase its expected profit over the eight periods from zero in
the benchmark case to $12000 in the strategic case.

5.4. Generation cost comparison
Table 3 shows a comparison of the expected generation cost for the

benchmark case and the strategic case. The generation cost is decreased
when storage is introduced for all simulations, both in the benchmark
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Fig. 3. Illustrative example results for the two storage units. Benchmark case (blue, top), strategic case (red, middle) and price deviation at the buses corresponding
to the two units (green, bottom). Thick black lines represent offer-bid values and colored bars represent dispatch or price deviation.
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the two units (green, bottom). Thick black lines represent offer-bid values and colored bars represent dispatch or price deviation.

Table 3
Comparison of expected generation cost for the simulations.
Case Without Case With Case With
Storage Competitive Storage  Strategic Storage
(Benchmark) (Strategic)
Illustrative example I $80580 $72367 $74246
Illustrative example IT $80580 $72367 $74277
Tllustrative example III $81838 $73748 $75501
24-bus 1 $125170 $118896 $119524
24-bus 11 $691567 $641036 $645797
118-bus $852852 $839325 $840852

case and in the strategic case. The generation cost is however lower in
the benchmark case than in the strategic case.
5.5. Computational comparison

Table 4 shows the computational requirements of the Gurobi BB
algorithm for solving the binary expansion MILP model and the SBB

Table 4

algorithm for solving the proposed disjunctive program (11). The SBB
algorithm is implemented by the authors using a Python interface. In
order to get a fair comparison, the Gurobi BB does not apply pre-solve
algorithms or other heuristics. For the simulations performed, the
proposed SBB algorithm is orders of magnitude more efficient than
Gurobi BB in terms of nodes explored. For the two price-quantity bid-
ding cases (the illustrative example I and the 118-bus), as well as the
self-schedule 24-bus II case, SBB finds the optimal solution while
Gurobi BB fails to find a proven optimal solution. Solving times for the
two algorithms are moreover shown in Table 4. Note that Gurobi BB
utilizes multithreading with 8 threads but SBB does not. Therefore the
difference between the two approaches is even greater than the re-
ported solving times would suggest. Fig. 5 shows a graphical compar-
ison of the optimality gap convergence for the two algorithms (pro-
posed SBB and Gurobi BB) for the 24-bus I case.

5.6. Computational comparison with a continuous MILP formulation

As shown in several publications, it is possible to linearize a bilevel
electricity market model using the strong duality condition to linearize

Comparison of the computational requirements of the different simulations and algorithms. The complexity of the MILP model is also reported in terms of the number

of continuous variables, binary variables and constraints.

Simulation Nodes explored Solving time [min] MILP complexity

SBB Gurobi BB SBB Gurobi BB cont. bin. constr.
llustrative example I 1.31 x 106 * 162.8 * 1584 88 2395
Illustrative example II 59623 1.96 x 106 5.2 20.5" 1608 104 2555
Tllustrative example III 57191 2.05 X 106 16.1 128.3" 4728 104 7505
24-bus 1 47155 8.90 x 106 31.4 1650.0" 7400 88 8203
24-bus 11 69103 ® 12.7 * 3348 132 3781
118-bus 1.11 x 106 * 296.2 * 4064 72 4313

«No proven optimal solution found after 10 million nodes explored.

T Note that Gurobi BB utilizes multithreading with 8 threads but SBB does not.
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Fig. 5. Convergence of the optimality gap for the two solution algorithms for
the 24-bus I case.

the objective function and use the Big-M technique and binary variables
to linearize the complementary slackness conditions. This has for ex-
ample been applied in works such as [35,38]. The resulting model is a
continuous one and therefore the resulting bid/offer schedules are
continuous. However, since the complementary slackness conditions
have to be linearized using the Big-M technique, the model contains a
great number of binary variables. This can lead to models which are
impossible to solve, especially for electricity market models with many
transmission constraints. This modelling limitation can be seen clearly
in [38] where the author limits the number of binding transmission
constraints in order to make the model tractable. Moreover in [35], the
authors disregard the transmission constraints all together.

One of the main reasons for proposing the disjunctive formulation is
to avoid this computational complexity tied to the Big-M linearization
of the complementary slackness conditions. In the proposed disjunctive
approach, transmission constraints in the lower level problem appear as
regular linear constraints as opposed to complementary slackness
conditions that involve binary variables. To illustrate this advantage of
the proposed model, we have implemented the continuous MILP
modelling approach on the IEEE 24-bus system with transmission
constraints; the same system as in Section 5.1. This [EEE test system is
however notorious for having very liberal transmission limits which are
not likely to be binding. We therefore show what happens when the
continuous model is solved for different scaling factors for the trans-
mission limits. As an example, a scaling factor of 0.7 represents that the
maximum flow of a transmission line is 70% of the maximum flow in
the original system. By doing so, one can see how the computational
complexities of the continuous model are affected by the increasing
number of binding complementary slackness conditions. Cases with 3
and 6 scenarios for the wind production are studied and the results can
be seen in Table 5. Note that the continuous MILP model is solved by
standard Gurobi BB, which utilizes multithreading with 8 threads as
well as pre-solve algorithms and other heuristics but SBB does not.
Therefore the difference between the two approaches is even greater
than the reported solving times would suggest.

The results show that the computational complexity of the con-
tinuous MILP model grows very rapidly as the transmission limits are
made more stringent, especially for the 6-scenario case where the
number of Big-M complementary slackness conditions is increased even
more. Gurobi BB is even unable to solve the two cases with the most
stringent transmission limits. This is not the case with the proposed
disjunctive method, where the computational complexity is more or less
constant, no matter the level of transmission congestion in the system.
For highly congested power systems, which are often prone to having
market power issues, the proposed method is therefore a superior
choice as it scales much better than its continuous counterpart.

6. Further analysis

In this section, further technical constraints are analyzed for the
same system as in the illustrative example. The merchant storage owner
is assumed to submit self-scheduling bids to the market as in illustrative
example 2.
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6.1. Uncertain bids by other generators

One can assume that in addition to the net demand being uncertain,
there are also uncertainties in the bids of the other generators in the
system. Let us assume that the value of the bid of the most expensive
generator is uncertain but can be represented by three scenarios. Its
most likely value is 60$/MWh with a probability of 0.6 but other
scenarios give values of 55%/MWh and 50 $/MWh, each with a prob-
ability of 0.2. In this case the expected profit of the merchant storage
owner is lowered to $5174.5 compared to $5815.0 in the original case,
because the storage owner now faces the prospect of cheaper supply
from its competitor.

6.2. Initial/final state-of-charge requirement

When scheduling successive planning horizons, it may be important
to put a requirement on the storage level of the storage units at the end
of the planning horizon. Such a requirement is captured by constraint
(1f) in the merchant storage problem. It makes sure that the storage
level at the end of the planning horizon should be no lower than that at
the beginning. The storage capacity of each unit is 400 MWh. Table 6
shows how the expected profit of the merchant storage owner is af-
fected when the initial storage level is varied and is accompanied by the
constraint that the final storage level must be no lower than the initial
one. The results are shown graphically in Fig. 6 and also include the
benchmark case where both units are fully controlled by the ISO. When
the initial storage level is relatively low (0-200 MWh), it has no impact
on the expected profit ($2702.1 and $5815.0 for the benchmark and
strategic cases, respectively). This is mainly because the units are still
able to charge during the early periods when there is substantial wind
power available and the net demand is low. However, when the initial
storage level is increased further, the expected profit reduces, both for
the benchmark and the strategic case. It even becomes zero when both
storage units are fully charged at the beginning of the planning horizon
and it is required that they are fully charged at the end of the planning
horizon.

6.3. Arbitrage by other players

The proposed model in this paper is able to capture the behavior of
other non-strategic storage units that have the opportunity to arbitrage
between different periods. In this example it is assumed that the stra-
tegic merchant storage owner only has half of its previous capacity, that
is a single storage unit (unit 6) with an installed capacity of 100 MW
connected at bus 4. Furthermore there is also a non-strategic storage
unit (unit 5) present at bus 3 which surrenders its control to the ISO.
The ISO is therefore free to operate that storage unit in a way which
best benefits the system in terms of minimizing the cost. When such a

Table 5
Computational comparison between the proposed disjunctive approach and a
continuous MILP formulation.

Transmission Nodes explored Solving time [min]
scaling factor ~ SBB Continuous SBB Continuous
MILP MILP
3 scenarios 0.8 45665 5236 24.6 0.2
0.7 46795 22410 24.5 0.4
0.6 69431 40863 37.1 1.0
0.5 15333 4.15 x 106 9.9 92.1
6 scenarios 0.8 84209 95464 102.5 4.9
0.7 80131 2.74 x 106 107.3 126.2
0.6 89965 * 121.5 *
0.5 32387 * 44.7 *

“No proven optimal solution found after 10 million nodes explored.
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Table 6
The expected profit of the strategic storage owner as a function of the initial/
final storage level.
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Table 7
The expected profit of the strategic storage unit (unit 6) as a function of the
installed capacity of the non-strategic storage unit (unit 5).

50 [MWh] Expected profit [$] Ps, Ds [MW] Unit 6 expected profit [$]
Benchmark Strategic Benchmark Strategic
0 -200 2702.1 5815.0 0 4623.8 4672.8
220 3594.2 5815.0 20 4341.0 4341.0
240 4040.2 5815.0 40 3505.7 4100.2
260 3594.2 5815.0 60 2837.2 3639.4
280 4486.3 5547.1 80 2168.6 3238.3
300 3817.2 4878.0 100 1620.0 2537.1
320 3741.5 4140.0 120 951.4 2136.0
340 3289.2 3439.1 140 0.0 1568.6
360 2725.4 2725.4 160 0.0 1268.6
380 1534.6 1534.6 180 0.0 867.4
400 0.0 0.0 200 0.0 433.7
220 0.0 433.7
240 0.0 324.0
6000 | ——— Strategic
% - - - Benchmark
éc 5000 . % 5000 | —— Strategic
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Fig. 6. The expected profit of the strategic storage owner as a function of the
initial/final storage level S’.

player is present in the market, the strategic merchant storage owner
includes this in the lower-level problem, just like any other generator.
This will add three constraints to the lower-level problem, identical to
the ones given in (1d)—(1f). The KKT conditions are then updated ac-
cordingly. Table 7 shows how the expected profit of the merchant
storage owner is affected by the presence of another arbitraging unit in
the market that is completely controlled by the ISO. The results are
shown graphically in Fig. 7 and also include the benchmark case where
unit 6 is also fully controlled by the ISO. As can be seen, the influence
on the expected profit is substantial, both for the benchmark and the
strategic case. When the installed capacity of the non-strategic storage
unit increases, the expected profit of the strategic unit deteriorates.
However, the expected profit in the strategic case is higher than in the
benchmark case.

7. Conclusion

This paper proposes a stochastic disjunctive programming model for
finding the optimal offer-bid strategy of a merchant storage portfolio.
The interaction between the merchant storage owner and the ISO is
modeled as a stochastic bilevel optimization model and then re-
formulated as a stochastic disjunctive program. Employing the dis-
junctive nature of the optimization model, a specialized branch-and-
bound algorithm is proposed. The proposed SBB solution algorithm
branches on the ranges of discrete variables (rather than binary vari-
ables in the standard BB algorithm). To find a relaxed solution of the
proposed stochastic disjunctive program, first the concept of quasi-re-
laxation is defined. Then a linear quasi-relaxation is derived for the case
of the merchant storage model. Both the proposed disjunctive pro-
gramming model and the SBB solution algorithm are benchmarked
against current practices in literature for modeling and solving these
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Fig. 7. The expected profit of the strategic storage unit (unit 6) as a function of
the installed capacity of the non-strategic storage unit (unit 5).

types of problems (binary expansion MILP model and Gurobi BB). The
numerical results confirm the performance of the modeling approach
and its solution algorithm for dealing with the optimal offer-bid
strategy of an energy storage portfolio. Simulations of test systems re-
veal the various abilities of the merchant storage owner to exercise
unilateral market power. Those include demand withholding, generation
withholding and under-use which result in an increased congestion in
both space and time when compared to the welfare-maximizing use of
storage. Further technical analysis was carried out to shed a light on
how factors such as uncertain bids by other players, final state-of-
charge requirements and arbitrage by other storage players affect the
profit of the merchant storage owner. The results showed that all these
factors have a tendency to limit the expected profit. Although the
modeling approach and the SBB algorithm are derived in the context of
a merchant storage offer-bid model, the same modeling approach and
solution algorithm might be applicable for other stochastic bilevel op-
timization problems.

Declaration of Competing Interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The authors would like to thank the Swedish TSO, Svenska Kraftnét,
for their financial support of the project.



E. Témasson, et al. Applied Energy 260 (2020) 114251

Appendix A. Proofs

Proof of Lemma 1. The same approach as in [41] 1s used for proof of this lemma. Consider any feasible solution (p”, it» Cits /"1(6) ,ui(t;v‘), Dinw> dirw) tO

(11). It suffices to construct a feasible solution (p,,, d i,, Cits ,ui[w s ”:(rw& , Dinw’» dinw”) of (11Q) since the latter has the same objective value in (11Q) as the
former does in (11). Let

B = 0 )+ 1) (Ala)
O = (1 = yPy (O + 1O (A.1b)
e =yl (S + ) (Al0)
B = (1 =y S + ) (A1d)
Pi;; = yizc By + Pi) (A.le)
Py = =3y, + i) (A1D)

o = Y5 (diny + dify (Alg)

e = A =y (i, + dit), (A.1h)

which is clearly feasible in (11Q). Furthermore, substituting (A.1a)-(A.1h) into (11Q) results in the same constraints as in (11), apart from the
disjunctive constraints. All other constraints in (11Q) are identical to their counterparts in (11). ]

Proof of Lemma 2. The same approach as in [41] is used for proof of this lemma. When a variable y, is either 0 or 1, the offer-bid value is either at
the lower bound or the upper bound of that branch, both of which are valid discrete values and therefore fulfill the disjunctive constraints. []
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