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Can Forward Commodity Markets Improve Spot Market
Performance? Evidence from Wholesale Electricity’

By AKSHAYA JHA AND FRANK A. WOLAK

Forward markets are believed to aggregate information about future
spot prices and reduce the cost of producing the commodity. We
develop a measure of the extent to which forward and spot prices
agree in markets with transaction costs. Using this measure, we show
that day-ahead prices better reflect real-time prices at all locations
in California’s electricity market after the introduction of financial
trading. We then present evidence suggesting that operating costs
and input fuel use fell after the introduction of financial trading on
days when the nonconvexities inherent to the production and trans-
mission of electricity are especially relevant. (JEL D23, D24, G13,
L.94,1.98, Q48)

here is a growing empirical literature demonstrating that forward prices pro-

vide important information about future spot prices', A number of scholars
have argued that increasing forward market liquidity can also reduce the cost of
producing the commodity (Working 1953; Gray 1964; Cox 1976). This is because
the suppliers of goods that require incurring sunk costs to produce often use forward
market outcomes to decide whether to incur these sunk costs.

For example, an iron ore mine might sign a forward contract with a steel man-
ufacturer that finances the sunk cost of opening a new iron ore seam to serve this
demand. Finding the least-cost source of additional iron ore for each steel manufac-
turer can be costly if there are many spatially distinct iron ore mines. Introducing
purely financial participants into the forward market for iron ore can increase the
likelihood that the least-cost mix of suppliers is found to serve all steel manufac-
turers. This is because financial players operating in the forward market earn the
difference between the price at which they sell iron ore to a steel manufacturer and
the forward price they pay to a mine owner for that raw material. Assuming there are
many spatially distinct mines and steel manufacturers, increased competition in the
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forward market for iron ore that operates months or even years in advance of actual
production should result in the sunk costs necessary to produce being incurred by
the combination of mines that yields the least-cost supply of iron ore to all of the
steel manufacturers.

This example illustrates why empirical researchers have found it difficult to link
increases in forward market liquidity to increases in the extent to which forward
prices reflect future spot prices or reductions in production costs. Specifically,
forward markets typically clear months or even years before the commodity is
delivered, and many confounding changes can occur during this time interval. We
overcome this empirical challenge by studying wholesale electricity supply where
sunk cost commitments made in a day-ahead forward market impact the real-time
cost of supplying locational demands throughout the transmission network. In the
day-ahead and real-time markets, the same product, electrical energy at a specific
location in the transmission network in a specific hour, is bought and sold. Similar
to the case of iron ore mines, electricity suppliers use day-ahead forward market
outcomes to determine whether to incur the sunk costs associated with starting up
their units to serve demand in real time.

This paper studies the introduction of financial trading to California’s wholesale
electricity market. This allows purely financial participants that do not produce or
consume electricity to trade day-ahead/real-time price differences at thousands of
locations in the transmission network. Purely financial market participants can sub-
mit bids to buy or offers to sell energy in the day-ahead market at a location with the
understanding that any energy bought or sold in the day-ahead market must be sold
or purchased in the real-time market at the prevailing real-time price.

The California Independent System Operator (ISO) introduced purely financial
participation in order to reduce differences between day-ahead and real-time prices
at over 4,000 locations in the state’s transmission network.” Analogous to the iron ore
example, reducing differences between day-ahead and real-time prices was thought
to lead to reductions in operating costs and input energy use. Trades submitted by
purely financial participants at thousands of locations in the transmission network
can result in forward market outcomes that better reflect real-time conditions and
thus, a lower-cost combination of individual generation unit owners incurring sunk
costs to produce to serve locational demands throughout the transmission network.

For the case of iron ore mines and steel manufacturers, the market efficiency
benefits from financial trading are likely to be largest when there are many spa-
tially distinct buyers and sellers because of the need to coordinate many sources
of supply with many locations of demand. By the same token, we expect the mar-
ket efficiency benefits from purely financial participation in wholesale electricity
markets to be largest when there are many distinct buyer and seller locations in
the electricity market. There are likely many distinct “submarkets” when many
of the operating constraints inherent to electricity production and transmission
bind. Namely, similar to the production process for iron ore as well as many other
products, electricity generation units have sunk costs to start up, minimum safe

2 See https://www.caiso.com/Documents/MSCFinalOpiniononConvergenceBidding. pdf.
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operating levels significantly greater than zero, restrictions on how fast they can
move to different operating levels, and restrictions on the minimum time they must
operate or remain idle. There are also thousands of constraints on allowable flows of
energy between locations in the transmission network, which implies the potential
for substantial differences in real-time prices across these locations. We expect the
benefits from introducing purely financial participation to US wholesale electricity
markets to occur primarily when a significant fraction of these constraints bind.

To examine how differences between day-ahead and real-time prices changed
after the implementation of financial trading, we introduce a measure of the extent
to which the 24-dimensional vector of hourly average day-ahead prices at a location
in the transmission network reflects the 24-dimensional vector of hourly average
real-time prices at the same location. This measure is based on a model of the behav-
ior of a purely financial participant with the ability to trade 24 assets correspond-
ing to the average day-ahead /real-time price differences for each hour of the day.?
This trader faces a per unit transaction cost associated with buying or selling one
megawatt-hour (MWh) of any of these assets. The trader buys or sells the portfo-
lio of day-ahead /real-time price differences that yields the highest expected profits
after accounting for this transaction cost.”

Using this model of trading behavior, we compute two measures of implied trans-
action costs using hourly, location-specific data on day-ahead and real-time prices
before and after financial trading was introduced at the vast majority of pricing loca-
tions in California (California ISO 2009-2012). We find that both of these measures
fell substantially after California introduced purely financial participation.” In addi-
tion, both of these measures fell more at locations where trading was particularly
restricted prior to the introduction of financial trading.

We also show that the volatility of the vector of day-ahead /real-time price differ-
ences and the volatility of the vector of real-time prices fell at the vast majority of
pricing locations after the introduction of financial trading. This result is consistent
with financial trading reducing the cost of serving demand because it indicates that
the location-specific generation unit output levels that emerge from the day-ahead
market are typically closer to their real-time operating levels. This implies fewer
instances of real-time changes in operating levels for generation units relative to
their day-ahead schedules, which implies fewer costly real-time starts and shut-
downs of generation units and potentially lower average daily operating costs.

To explore this hypothesis, we compare daily market outcomes before versus
after the introduction of financial trading on “high-complexity days” relative to

3This formulation is consistent with the market rules governing all US wholesale electricity markets.
Specifically, purely financial trading in these markets occurs daily rather than hourly because financial participants
simultaneously submit bids and offers to trade day-ahead/real-time price differences at each location in the trans-
mission network for all 24 hours of the following day.

“The relatively small literature on the role of trading costs in explaining differences between forward and
spot commodity prices focuses either on incorporating trading costs into theoretical models (see Williams 1987,
Hirshleifer 1988; Davila and Parlatore 2021) or quantifying the explicit transaction fees paid by traders in different
markets, as discussed in Frazzini, Israel, and Moskowitz (2018).

SConsistent with our empirical results, a simulation study by Li, Svoboda, and Oren (2015) finds that the
revenues earned from implementing their optimal strategy for trading day-ahead/real-time price differences fell
significantly after California introduced financial trading.
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“low-complexity days.” We classify days as high complexity if many transmission
and generation unit operating constraints bind, which can significantly increase the
complexity of finding the least-cost combination of sunk cost commitments and
operating levels for generation units to serve demands at the thousands of locations
in the transmission network. The introduction of financial trading has the potential
to deliver production cost savings on high-complexity days because the bids submit-
ted by purely financial participants to the day-ahead market can result in a lower cost
combination of day-ahead energy schedules for generation units to meet real-time
demands across the network. On “low-complexity” days, few, if any, differences in
real-time prices across locations in the state are expected because transmission net-
work and other operating constraints are not likely to bind in the real-time market.
On these days, the ability of retailers to alter their service territory—level demand
bids in the day-ahead market and competition among suppliers to sell energy in an
unconstrained transmission network are likely to yield day-ahead generation sched-
ules that are close to least-cost real-time operating levels.

We employ an event study framework common to the finance literature to exam-
ine this hypothesis.? Specifically, we estimate the relationship between the market
outcome and control variables, comparing residualized outcomes in the pre— versus
post—financial trading sample periods for both high-complexity days and all other
days. Our primary market outcomes are the log of the daily total fuel costs incurred
by California’s gas-fired fleet divided by the daily total output produced by these
units and the log of the daily total fuel used by these plants divided by their daily
total output.

We consider three measures of high-complexity days, all of which attempt to
measure the extent to which a significant fraction of operating constraints are
expected to bind in the real-time market. The three measures are the level of daily
total demand, the daily standard deviation across locations and hours of the day of
real-time prices, and daily total number of starts by gas-fired units. For all three mea-
sures, we find that daily fuel costs per MWh and daily input energy use per MWh
fell on high-complexity days after financial trading was introduced. In contrast, we
find no differences in either fuel costs per MWh or input energy use per MWh before
versus after the introduction of financial trading on all other days in our sample. This
is consistent with our view that there is little potential for financial traders to reduce
operating costs or input fuel use during days when finding the least-cost mix of gen-
eration unit output levels is as straightforward as finding the intersection between
the aggregate supply curve and the aggregate demand curve. We estimate that fuel
costs per MWh (input fuel use per MWh) are 2 percent (1.5 percent) lower after the
introduction of financial trading on days with demand above the seventy-fifth per-
centile of daily total demand. The annual fuel cost savings and annual reduction in
carbon emissions implied by these estimates are roughly $16.6 million and 160,635
tons of CO,, respectively.

The actions of purely financial participants are not without controversy.
Specifically, many argue that financial traders earn revenues primarily at the

6 For more details on event study models, see MacKinlay (1997) and Eckbo (2008).
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expense of producers and consumers of the commodity.’ For wholesale electricity,
some have argued that financial participants submit bids intended to profit from
the physical realities inherent to electricity production and transmission, either by
taking advantage of rules pertaining to starting up or ramping power plants (Parsons
et al. 2015) or by inducing transmission congestion (Birge et al. 2018). On the
other hand, previous work documents substantial differences between forward and
spot prices in electricity markets without financial participation, due either to the
exercise of market power (Borenstein et al. 2008; Ito and Reguant 2016) or risk
preferences (Routledge, Seppi, and Spatt 2001; Bessembinder and Lemmon 2002,
2006; Longstaff and Wang 2004). Moreover, others have argued that increases in
financial trading volumes decrease the exercise of unilateral market power (Saravia
2003; Mercadal 2022), decrease the volatility of electricity prices (Hadsell 2007),
and increase grid reliability (Isemonger 2006). We contribute to this existing litera-
ture by providing evidence that the introduction of financial trading to California’s
wholesale electricity market led to a reduction in the implicit cost of trading
day-ahead /real-time price differences, the volatility of these prices differences, and
the volatility of real-time prices. We also show that operating costs and fuel use fell
on high-complexity days after the introduction of purely financial participation for
three different measures of complexity.

The remainder of the paper proceeds as follows. The next section describes how
California and other US wholesale electricity markets operated before versus after
the introduction of financial trading. Section Il discusses several representative exam-
ples of how the attempts of purely financial participants to profit from differences
between day-ahead and real-time prices at individual locations in the transmission
network can reduce the cost of serving demand throughout the transmission network
during high-complexity days. We present descriptive trends in day-ahead/real-time
price differences for California’s wholesale electricity market in Section III. This
is followed by the derivation of our measure of how well forward prices reflect
expected real-time prices in Section I'V. Section V presents the results from applying
this methodology to California’s wholesale electricity market. Section VI provides
evidence suggesting that the introduction of financial trading had market efficiency
benefits on high-complexity days. Finally, we conclude in Section VII by exploring
the implications of our findings for electricity market design.

I. Market Operation with and without Financial Trading

In this section, we first describe how day-ahead and real-time markets operated
in California and other US wholesale electricity markets prior to the introduction
of purely financial trading, termed “virtual bidding” by industry participants. This
discussion emphasizes the computational complexity associated with finding the
least-cost mix of generation unit output levels to meet real-time locational demands

7See “Traders Profit as Power Grid Is Overworked,.” New York Times, August 14, 2014 for the case of wholesale
electricity markets. See “U.S. Suit Sees Manipulation of Oil Trades,” New York Times, May 24, 2011 for the case
of oil. See “Did Goldman Sachs Rig Commodities Markets?” CNN Business, November 20, 2014 for the case of
aluminum.
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when a significant fraction of the thousands of transmission network and other
operating constraints that must be respected for reliable operation of the grid are
likely to bind. The next subsection describes how purely financial trading is inte-
grated into the day-ahead and real-time market-clearing processes. The final sub-
section discusses the limited ways in which physical market participants could trade
day-ahead /real-time price differences prior to the introduction of financial trading.

A. Locational Marginal Pricing in Multisettlement Markets

In most markets, products are shipped directly from seller to buyer. In wholesale
electricity markets, generation units inject electricity into the transmission network,
and this electricity flows to buyers according to Kirchhoff’s laws.f Thus, commit-
ments between buyers and sellers of electricity constitute financial rather than phys-
ical arrangements. The buyer does not withdraw the actual energy injected into the
transmission grid by the seller. Only the amount of energy injected to the grid by
generation units and the amount of energy withdrawn from the grid by electricity
demanders can be measured.’

All electricity supply industries have high-voltage transmission networks with
finite transfer capacity between locations where energy is injected or withdrawn.
For this reason, the system operator must sometimes satisfy demand at a given loca-
tion using nearby higher-cost generation units rather lower-cost units located farther
away. Because the extent to which these capacity constraints bind has grown over
time, all US wholesale markets have adopted a dispatch and pricing mechanism that
accounts for these operating constraints by setting potentially different prices at all
nodes in the transmission network. This dispatch and pricing mechanism is called
nodal pricing or locational marginal pricing (LMP).

The LMP algorithm sets a price at each node that reflects all relevant transmission
network constraints, transmission losses, generation unit start-up and ramping con-
straints, and all other operating constraints relevant to withdrawing one more MWh
of energy at that location.'” Locational marginal prices in the day-ahead market
are determined based on hourly offer curves submitted by suppliers and hourly bid
curves submitted by electricity retailers.'! Specifically, suppliers submit generation
unit—level offer curves and retailers submit locational demand curves for each of the
24 hours of the following day. Market participants must submit all 24 of their hourly
bid curves by 10 AM on day ¢ — 1 for electricity to be delivered on day ¢.

Generation unit offer curves have three parts: a start-up cost offer, a minimum-load
cost offer, and an energy supply curve. The start-up cost offer is a fixed dollar amount
that must be paid to the generation unit owner if the unit is not generating electricity

8Schweppe et al. (2013) provides an accessible introduction to power system operation.

9 As discussed in Schweppe et al. (2013), both the quantity of electricity injected by each generation unit as well
as where this electricity is withdrawn depends on the level of demand at all locations in the transmission network,
the output levels of all of the generation units, the configuration of the transmission network, and a host of other
physical operating constraints.

'9Bohn, Caramanis, and Schweppe (1984) summarizes the basics of the locational marginal pricing algorithm.

"' We use the more familiar term “retailer” rather than the more technical term “load-serving entity” to refer to
any entity that withdraws energy from the high-voltage transmission grid for its own consumption or sale to retail
customers.
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at the start of day 7 but is accepted to produce a positive amount of energy at some
point during that day. The minimum-load cost offer is a fixed dollar payment that
must be paid to the generation unit owner for each hour that the unit is producing
energy at its minimum safe operating level.'? Finally, the energy offer curve for hour
h indicates how much additional electricity the supplier is willing to provide from
the unit in hour % of day ¢ as a function of the market-clearing day-ahead price at the
unit’s location. This energy offer curve is a nondecreasing step function, where each
price-quantity step determines the minimum price that the generation unit owner
must be paid in order to produce at most the quantity of energy associated with that
step.'? The sum of the quantity increments for each energy offer curve is restricted
to be less than or equal to the capacity of the generation unit.

Retailers submit willingness-to-purchase bid curves in the day-ahead market that
are nonincreasing in the price. This willingness-to-purchase function is composed
of price-quantity pairs ordered from highest to lowest price. A retailer is willing
to increase the amount of electricity it purchases by the offer quantity increment
provided that the market-clearing price is at or below the corresponding offer price
increment. In California, retailers submit willingness-to-purchase bid curves at the
service territory level. The market operator then allocates shares of these bid curves
to individual demand nodes in the retailer’s service territory.' This allocation is
based on the market operator’s estimate of the fraction of the retailer’s total demand
that is withdrawn from each of the locations in its service territory.

California’s Independent System Operator clears the day-ahead market by maxi-
mizing the sum of consumer and producer surplus for all 24 hours of the following
day subject to a host of constraints. These include meeting the demand for energy
and operating reserves at more than 4,000 locations in the transmission network
during all 24 hours of the following day, respecting the ISO’s best estimate of the
configuration of the transmissien network on the following day, as well as genera-
tion unit operating constraints.'? The locational marginal price (LMP) at each loca-
tion in the transmission network is equal to the increase in the maximized value of
the objective function from the California ISO’s optimization problem as a result of
increasing the amount of energy withdrawn at that location by one MWh.

All market participants are notified of these LMPs as well as their day-ahead sup-
ply and demand obligations at 1 PM on the day before the delivery date. Day-ahead
supply and demand obligations are firm financial commitments to sell or buy these
quantities of energy. For example, if a supplier sold 50 MWh of electricity to be
injected at a given location in the 6 PM hour of the following day at a price of $40 per
MWHh, it is guaranteed to be paid $2,000 (= 50 MWh x $40/MWnh) regardless of

12 All generation units have a minimum safe operating level that is significantly greater than zero.

131n California, suppliers are permitted to submit generation unit—level offer curves with up to ten price-quantity
pairs.

14Among the three major retailers in California, Pacific Gas and Electric has more than 1,500 nodes in its
service territory, Southern California Edison has approximately 200 nodes in its territory, and San Diego Gas and
Electric has approximately 300 nodes in its territory. Online Appendix Figure A.2 presents a map of the geographic
territories served by each of these retailers.

15 As discussed in Wolak (2019) and Buchsbaum et al. (2022), a collection of operating reserves are purchased
by the ISO in order to ensure that supply equals demand at every instant in real time even in the event that one or
more generation unit fails to produce electricity.
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the actual production of energy from its generation units at that location during that
hour of the following day. This is the sense in which all purchases and sales in the
day-ahead market are financially binding.

Between the close of the day-ahead market and the start of real-time system
operation, actual electricity demand at each location in the transmission network
is realized. Some generation units must produce more or less than their day-ahead
energy schedules in order to meet real-time demands at thousands of demand loca-
tions in California. At least 75 minutes in advance of each hour of real-time system
operation, generation unit owners submit offer curves specifying their willingness
to increase or decrease their output relative to their day-ahead schedules. Starting
with midnight on the delivery date, these offer curves are used to clear the real-time
market for each five-minute interval within the hour to meet the realized demand at
each location in the transmission network subject to the real-time configuration of
the transmission network and operating constraints on the output levels of all gen-
eration units. The configuration of the transmission network and the set of available
generation units in real time can differ from the configuration of the transmission
network and the set of available generation units used by the system operator to
determine day-ahead market outcomes.

The real-time market-clearing process results in real-time prices and genera-
tion unit operating levels to serve real-time demands at all nodes. The five-minute
real-time price at each location in the transmission network is equal to the increase
in the maximized value of the sum of consumer and producer surplus associated
with withdrawing an additional MWh at that location. The hourly real-time price is
the average of the 12 five-minute real-time prices within that hour. The combination
of a financially binding day-ahead forward market and a real-time spot market is
called a two-settlement market because only real-time deviations from day-ahead
generation and demand schedules are settled at the hourly real-time price.

Recall our previous example of a supplier that sold 50 MWh of energy in the
day-ahead market at a price of $40 per MWh. If that supplier only produced 30
MWh of electricity between 6 PM and 7PM on day ¢, it would have to purchase the
remaining 20 MWh at the hourly real-time price for 6pM at the same location in
order to meet its forward market commitment. If the supplier’s unit instead pro-
duced 55 MWh, then the additional 5 MWh beyond its day-ahead schedule of 50
MWh is sold at the hourly real-time price at that location.

B. Purely Financial Trading of Wholesale Electricity

All US wholesale electricity markets currently allow virtual bidding where every
market participant has access to the following purely financial instrument: buy (sell)
a specified quantity of electricity at a given location and hour of the day in the
day-ahead market if the day-ahead price is below (above) the offer price, with the
obligation to sell (buy) back the same quantity of electricity at the same location
and hour of the day in the real-time market as a price-taker.'S For example, if a

16See California ISO (2023) for a full list of the physical and financial participants that are licensed to submit
virtual bids in California’s wholesale electricity market as of March 2023.
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virtual bidder sells five MWh of energy at a location in the day-ahead market, this
market participant must purchase five MWh in the real-time market at the prevailing
real-time price at that location. In short, any financial position taken in the day-ahead
energy market by a virtual bidder must be closed out in the real-time market as a
price-taker.

The market operator treats physical and virtual bids the same in the day-ahead
market-clearing process. This implies that the actions of virtual bidders directly
influence day-ahead and real-time market outcomes. For example, if a market par-
ticipant expects the day-ahead price to exceed the real-time price at a location, she
might place a virtual offer to supply energy to the day-ahead market at that location.
If accepted, this supply offer to the day-ahead market has the potential to reduce the
day-ahead price. Moreover, because virtual energy sold by the financial participant
in the day-ahead market must be purchased back in the real-time market, this virtual
bid increases the demand for energy at the location in the real-time market. This
potentially increases the real-time price at that location. Placing a virtual supply bid
at a location thus makes it less likely that the day-ahead price will be higher than
the real-time price at that location.'’ By the same logic, an accepted virtual bid to
purchase energy in the day-ahead market reduces real-time demand at that location,
which can reduce the real-time price at that location.

Submitting virtual bids is not costless. First, the total value of virtual bids that
each purely financial participant can submit must be less than the collateral it has
posted with the California ISO. Market participants must also pay a monthly fee
to the California ISO in order to be able to submit virtual bids. In addition, all US
wholesale electricity markets charge transaction fees associated with submitting vir-
tual bids as well as additional fees if these virtual bids are accepted in the day-ahead
market. Finally, financial traders pay a significant share of total “uplift” charges.
Uplift charges compensate generation unit owners for actions that they take at the
request of the California ISO that are not recovered from selling energy and operat-
ing reserves in the day-ahead and real-time markets.

Although average uplift charges range from roughly 40-60 cents per MWh, there
is substantial volatility in the hourly value of these charges. A large realization of
uplift charges can easily make a purely financial trade that earns substantial rev-
enues unprofitable. Online Appendix Section B provides further details on uplift
charges and the transaction costs associated with financial trading in California’s
wholesale electricity market.

C. Trading Day-Ahead/Real-Time Price Differences without Virtual Bidding

Prior to the introduction of purely financial trading, a supplier that expects the
day-ahead price to be higher (lower) than the real-time price at a location where it
owns a generation unit might sell more (less) energy in the day-ahead market than
it expects to produce in real-time. The energy offer curves submitted by suppliers
must have a minimum offer quantity greater than the minimum safe operating

7Virtual bidding is also called convergence bidding precisely because it increases the likelihood of conver-
gence between day-ahead and real-time prices.
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level of the unit and a maximum offered quantity less than the unit’s capacity.
Consequently, prior to the introduction of financial trading, a generation unit owner
could trade day-ahead /real-time price differences only at locations where it owns
generation units and only for quantities of energy up to the capacity of the genera-
tion unit at that location.

As noted earlier, retailers must submit demand bids in the day-ahead market at the
level of their service territory; the California ISO allocates each retailer’s demand
bid to individual locations in their service territory.'S Consequently, the retailer can-
not trade day-ahead /real-time price differences at a single location because adjust-
ing its territory-level demand bid impacts the retailer’s day-ahead positions at all
locations in its service territory and thus, the retailer’s trading profits at all locations
in its service territory.

With the introduction of financial trading, any market participant can submit
virtual bids at any location in the transmission network where virtual bidding is
permitted.'” This implies that each market participant now faces competition from
all other market participants when trading day-ahead/real-time price differences
at any location where virtual bidding is permitted. For this reason, we expect the
introduction of financial trading to increase liquidity in the market for trading
day-ahead /real-time price differences and thus, increase the extent of agreement
between day-ahead and real-time prices at all locations in the transmission network.

We also expect day-ahead prices to better reflect real-time conditions at gen-
eration locations relative to demand locations in markets without purely financial
participation. This is because suppliers can adjust their physical offers to trade
day-ahead /real-time price differences at locations where they own generation units,
while it is not possible for a retailer to adjust its service territory—level bids to trade
price differences at an individual demand location. Consequently, introducing finan-
cial trading should result in a larger increase in the extent of agreement between
day-ahead and real-time prices at demand locations relative to generation locations.

II. How FT Can Lower Production Costs

This section presents examples of how purely financial trading (henceforth
denoted FT) at specific locations in the transmission network can lower system-wide
production costs. FT aimed at profiting from differences between day-ahead and
real-time prices at a location in the grid can produce lower aggregate production
costs precisely because the market-clearing prices and output levels that emerge from
both the day-ahead and real-time markets are solutions to nonconvex, mixed-integer

8The collection of pricing locations in each retailer’s service territory is called its Load Aggregation Point
(LAP). Each retailer is charged an hourly price equal to the weighted average of the nodal prices in their LAP, where
the weights are the share of total demand in the LAP at that location during that pricing period. For example, if the
ISO estimates that demand at each of the ten locations in a service area is the same, then the weights are equal to
1/10 for each location. In this case, the LAP is equal to the simple average of the ten locational prices in its service
territory.

19US wholesale electricity markets typically restrict the set of locations at which virtual bidding is allowed.
For example, California’s ISO does not allow virtual bidding at locations it deems to be “electrically equivalent”
to other locations where virtual bidding is allowed. During our sample period, virtual bidding was allowed at over
2,600 locations.
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programming problems.” When many of the thousands of transmission and other
operating constraints bind in the real-time market, it is unlikely that the solution to
this nonconvex problem is a global optimum.*! Consequently, there is the potential
for FT at specific locations to both reduce the cost of serving real-time locational
demands and earn a profit for the financial trader.

The use of forward markets to reduce the cost of short-term market operation
in industries with nonconvexities in production is not unique to the electricity
supply industry. Almost any industry that requires incurring a sunk cost to pro-
duce uses forward markets to reduce production costs. For example, airlines use
information on forward market sales of travel between origin and destination pairs
to assign planes and crews-to routes in order to minimize the total cost of satisfy-
ing demand for air travel.?> Gallamore and Meyer (2014) provide an example of
how forward markets were used by US railroad companies in the aftermath of the
Staggers Act of 1980 that deregulated rail rates. Namely, electric utilities signed
long-term contracts with railroads to transport coal from the Powder River Basin
to their power plants. These forward market sales allowed the railroad companies
to incur the substantial sunk costs associated with infrastructures upgrades and
track expansions that ultimately lowered the average cost per ton of delivering
this coal.

The difference between wholesale electricity and these examples is the short time
horizon between when a commitment to incur the sunk cost to start up a genera-
tion unit is made and real-time operation occurs. Therefore, our examples focus on
instances where nonconvexities in the production and delivery of electricity com-
bined with binding operating constraints create opportunities for FT to reduce pro-
duction costs.

The first example involves a fossil fuel-fired generation unit with a start-up cost
and long start-up time. Specifically, the unit cannot operate in real time unless it
is scheduled to sell positive output in the day-ahead market because more than 75
minutes of advance notice is necessary to start the unit.” If the “long-start” unit
does not start up, any increase in real-time demand at the unit’s location must be
satisfied by a fast-start unit that has a higher operating cost. Suppose that a finan-
cial trader recognizes that the day-ahead price at this location is persistently below
the real-time price at this location for several hours of the day. Because of this, she
submits a bid to purchase energy at this location in the day-ahead market for these
hours, which she subsequently sells in real-time.

29For example, the decision to start up a generation unit is a binary variable and how much to operate each
committed unit within its allowable operating range is a continuous variable. Burer and Letchford (2012) survey the
available algorithms and software for solving mixed integer programs.

2Hf there are N constraints associated with turning a generation unit on or off and inequality constraints on
energy flows between locations in the transmission network that must be respected in this optimization problem,
then there are as many as 2" possible binding constraint configurations. Because the real-time market must clear
every five minutes, there is typically not sufficient time to exhaustively search through all of these possible con-
straint configurations.

22See Mercier, Cordeau, and Soumis (2005) for an example of this nonconvex optimization problem.

23During our sample period, roughly 20,000 MW of generation capacity in California required more than 75
minutes’ advance notice to start.
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The bid submitted by the purely financial participant increases day-ahead
demand at the unit’s location, which also increases day-ahead prices at that loca-
tion. This day-ahead price increase makes it more likely that the long-start unit
is scheduled to sell energy in the day-ahead market. If this low—variable cost,
long-start unit is now available to produce electricity the following day, more
expensive fast-start units are no longer required to meet demand in real time.
Summarizing, in this case, FT increases day-ahead prices and reduces real-time
prices, which also decreases the cost of serving real-time demand because the
long-start, low-cost unit produces electricity in real time rather than fast-start,
higher cost units.

‘We emphasize that the financial trader does not need to understand why day-ahead
prices are persistently lower than real-time prices. She only needs to observe that
fact and place the day-ahead market bid necessary to capture this locational price
difference. Her virtual demand bid impacts the day-ahead schedule of generation at
that location because purely financial bids are treated the same as physical bids in the
day-ahead market-clearing process. In our example, the long-start unit is scheduled
to produce in the day-ahead market as a consequence of the virtual demand bid. In
real time, the virtual bidder reverses her position; no energy is actually produced or
consumed by the bidder. Instead, the long-start, low—variable cost unit produces to
meet real-time demand at the location. Consequently, the financial participant’s bid
results in day-ahead schedules for generation units that are closer to the least-cost
mix of generation unit output levels necessary to meet real-time locational demands
throughout the transmission network.

A second example demonstrates the role that FT can play in managing transmission
constraints. Consider two locations in the transmission network, a generation-rich
location A and a generation-deficient location B. Suppose that a financial trader
notices that the price difference between locations A and B in the day-ahead market
is systematically larger than the real-time price difference between A and B (i.e.,
Pg(DA) — Ps(DA) > Py(RT) — P4(RT)). The financial trader does not know that
the reason that this is happening is because the market operator is systematically
releasing more transmission capacity between locations in the transmission network
in the real-time market than he is making available in the day-ahead market. This
means that more energy can flow from A to B in real time than the market operator
allows for when clearing the day-ahead market.

To exploit this difference across locations in day-ahead/real-time price spreads,
the financial trader can submit a demand bid at A and a supply bid at B for the same
number of MWh in the day-ahead market. These purely financial bids can allow
more long-start, low-cost generation to be committed at A in the day-ahead market
and less high-cost generation to be committed at B in the day-ahead market. In
real time, the increased amount of energy produced at A can flow to be consumed
at B because more transmission capacity between A and B is available than was
scheduled when clearing the day-ahead market. Consequently, FT reduces the cost
of serving demand in real time because the financial trader found systematic differ-
ences between day-ahead and real-time prices at A and B.

As these two examples illustrate, the potential for FT to reduce production costs
is greatest when there are likely to be many binding operating constraints in real
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time. These binding constraints along with the nonconvexities associated with
deciding which units to start up increase the complexity of the process of finding a
global optimum to the real-time market optimization problem. On days when these
nonconvexities are unlikely to be relevant, finding the global optimum solution to
the day-ahead market is often as straightforward as finding the point of intersection
between the system-wide supply curve and the system-wide demand curve for each
hour of the day, which implies limited scope for FT to reduce the cost of serving
real-time demand.

To understand the essential role that sunk start-up costs, significant start-up times,
and other nonconvexities such as ramp rates, minimum safe operating levels, and
transmission constraints play in creating the potential for FT to reduce production
costs, consider the example of an electricity market where none of these costs or
constraints are relevant. Assume that all firms have a constant marginal cost of pro-
ducing energy, zero start-up costs, can produce at any level of output from zero to
the maximum capacity of the unit instantaneously, and there is infinite transmission
capacity between all locations in the transmission network. Under these conditions,
a formal day-ahead market would have no market efficiency benefit. Day-ahead
energy schedules would involve no sunk costs because suppliers can turn on and
change their output levels instantaneously. Regardless of the day-ahead market
sales by suppliers or purchases by retailers, in real time, the market operator would
simply order the generation units in terms of their marginal cost from smallest to
largest and set the price at the marginal cost of the highest-cost unit needed to serve
demand. This would always yield the least-cost solution to serving demand in real
time regardless of day-ahead market outcomes.

In this example market, bids and offers submitted in order to profit from expected
differences between day-ahead and real-time prices would have no impact on the
real-time output levels of units. For example, suppose that a supplier believes that
the unconstrained day-ahead price will be higher than the unconstrained real-time
price. He would sell more energy into the day-ahead market than he expects to
produce in real time, profiting from this strategy if the realized day-ahead price
is indeed larger than the real-time price. However, this has no impact on the final
quantity of electricity produced in real time because there are no sunk costs to
starting units or operating constraints that would limit the ability of his units to
instantaneously produce as much as is needed to meet real-time demands across
the grid at least cost. The same logic applies for a retailer that believes that the
day-ahead price will be higher than the real-time price. In this case, the retailer
can submit less demand at the service territory level into the day-ahead market and
purchase the remaining demand in the real-time market. Once again, these actions
would not impact the least-cost combination of generation units to meet real-time
demand.

For this reason, we compare market outcomes before versus after the introduction
of FT on two types of days, high-complexity days, when a significant fraction of
operating constraints are likely to bind in real time, and all other days. Our proposed
mechanism suggests that production costs should fall after the introduction of FT on
high-complexity days but not all other days when the real-time market is adequately
approximated by the simplified convex market discussed above.
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ITI. Descriptive Analysis of Day-Ahead and Real-Time Prices

This section provides descriptive statistics on the first and second moments of
hourly day-ahead and real-time prices at the more than 4,000 locations in California.?
In the first subsection, we show that the average difference between day-ahead prices
and real-time prices is smaller in absolute value after the introduction of FT. The
second subsection documents differences in the sign of average day-ahead /real-time
price differences across demand locations versus generation locations before versus
after financial trading is introduced. This analysis yields evidence consistent with
the introduction of FT limiting the ability of retailers to exercise unilateral market
power in the day-ahead market. The final subsection demonstrates that the volatil-
ity of both the 24-dimensional vector of day-ahead/real-time price spreads and the
24-dimensional vector of real-time prices fell after the introduction of FT for the
vast majority of locations in California.

A. Descriptive Trends in Day-Ahead and Real-Time Prices

Figure 1 plots the monthly average day-ahead price minus the monthly average
real-time price. These averages are taken over both hours-of-sample in the month
and locations in the California transmission network. The horizontal purple (green)
line plots the overall average day-ahead/real-time price difference for the sample
period before (after) FT was introduced.? This figure makes clear that day-ahead
prices were lower than real-time prices on average prior to FT. After FT was intro-
duced, the average day-ahead/real-time price spread fell considerably in absolute
value.

It is important to note that a zero average difference between day-ahead and
real-time prices does not imply the absence of a profitable FT strategy. For exam-
ple, suppose that average price differences for the first 12 hours of the day are
+$10/MWh and average price differences for the remaining 12 hours of the day
are —$10/MWh. The average price difference would be zero, but a financial trader
could earn considerable profits from selling energy in the day-ahead market during
the first 12 hours of the day and buying energy in the day-ahead market during the
second 12 hours of the day. Consequently, all of the elements of the 24-dimensional
vector of hour-of-the-day-specific average differences between day-ahead and
real-time prices must be small for a profitable trading strategy not to exist. This fact
motivates our measure of the extent of agreement between day-ahead and real-time
prices discussed in Section IV.

Figure 2 plots the average day-ahead price minus the average real-time price
for each hour of the day. These averages are taken across days and pricing loca-
tions. The left panel focuses on the sample period before financial trading, while
the right panel focuses on the sample period after FT. For each hourly average

24These data are downloaded from the OASIS API administered by California’s Independent System Operator
(California ISO 2009-2012).

25The before-FT sample period is April 1, 2009 to January 31, 2011, and the after-FT sample period is February
1, 2011 to November 30, 2012.
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FIGURE 1. MONTHLY AVERAGE DAY-AHEAD PRICE MINUS REAL-TIME PRICE

Notes: This figure plots the monthly average day-ahead price minus the monthly average real-time price. These
averages are taken over all hours-of-sample in the month and pricing locations in California. The sample period
considered is April 2009 to November 2012. Monthly averages for the sample period before the introduction of FT
are plotted with a solid purple line; monthly averages for the sample period after FT are plotted with a dashed green
line. The horizontal dashed purple (green) line plots the overall average day-ahead/real-time price difference for
the sample period before (after) FT was introduced.
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FIGURE 2. HOURLY AVERAGE DAY-AHEAD PRICE MINUS HOURLY
AVERAGE REAL-TIME PRICE WITH 95 PERCENT CONFIDENCE INTERVALS

Notes: This figure plots the average day-ahead price minus the average real-time price for each hour of the day. For
the left panel (right panel), we utilize the sample period before (after) financial trading was introduced. For each
hourly average day-ahead/real-time price spread, we include 95 percent confidence intervals based on standard
errors two-way clustered by location and week-of-sample.

day-ahead /real-time price spread, we include 95 percent confidence intervals based
on standard errors two-way clustered by location and week-of-sample. Before FT,
there are many hours of the day with average price spreads that are statistically
different from zero (see the left panel of Figure 2). In contrast, only the average
price spread for 6 AM is statistically significant for the post-FT sample period (see
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the right panel of Figure 2). Nonzero average day-ahead/real-time price spreads do
not imply that financial participants can profit from trading these price differences.
This is because of the substantial transaction costs associated with buying or selling
virtual energy in the day-ahead market, an issue we address when developing our
model of an expected profit-maximizing purely financial trader in Section I'V.

B. Price Spreads for Generation versus Demand Locations

Ito and Reguant (2016) argue that a persistent difference between day-ahead
prices and real-time prices can be indicative of the exercise of unilateral mar-
ket power. As shown in Figures 1 and 2, average day-ahead prices were lower
than average real-time prices for most hours of the day prior to the introduc-
tion of financial trading in California. As discussed in Borenstein et al. (2008),
this suggests that large retailers were able to exercise unilateral market power by
withholding demand from the day-ahead market and driving down prices in the
day-ahead market.

In contrast, day-ahead prices are not persistently higher or lower than real-time
prices on average after the introduction of FT (see Figure 1 and panel B of
Figure 2). All but one of the pointwise 95 percent confidence intervals for the
hour-of-the-day-specific average price spreads contain O after FT. This suggests that
the actions of financial participants to exploit any persistent day-ahead/real-time
price differences prevented large buyers from exercising unilateral market power by
withholding demand from the day-ahead market.

To explore this hypothesis more formally, we compare the signs of hourly aver-
age day-ahead /real-time price spreads at generation locations versus demand loca-
tions before versus after the introduction of FT. For each location in California, we
first compute the mean of day-ahead/real-time price differences for each hour of
the day for both the pre-FT and post-FT sample periods. For each location and each
sample period, we then count the number of hours in the day with a positive average
day-ahead /real-time price spread.

Figure 3 plots the resulting empirical distribution function (EDF) of this count
across generation locations and across demand locations for both the pre-FT and
post-FT samples. After FT, there is a substantial increase in the number of hours
of day with a positive average day-ahead/real-time price difference for both gen-
eration and demand locations. The median across locations of the number of hours
of day with a positive average price spread increases from 6 in the pre-FT period
to 17 in the post-FT period. This rightward shift in EDFs after the introduction
of FT is consistent with the argument advanced by Saravia (2003) and Mercadal
(2022) that purely financial participants increase competition in the market for
day-ahead /real-time price spreads. This increased competition reduces the ability
of large buyers to withhold demand from the day-ahead market in order to lower
day-ahead prices relative to real-time prices.

For both the pre-FT and post-FT sample periods, we also note that the EDF for
demand locations is slightly shifted to the right relative to the EDF for generation
locations. For virtually all k between 0 and 24, a larger fraction of demand loca-
tions have k or more hours of the day with positive average price spreads relative



308 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY MAY 2023

Panel A. Before FT Panel B. After FT
11 1 ———-
17} 1)
c c - -
o o Generation locations
= 0.8 = 0.8 b )
S S | | emand locations
o o}
~ 0.61 +~ 0.6
o o
c c
S 0.44 O 0.44
5 5
Generation locations
o | QL ]
o o2 Demand locations o 02
o o
0- T T T T T 0- T T T T T
0 6 12 18 24 0 6 12 18 24
Number of hours of day Number of hours of day

FIGURE 3. NUMBER OF HOURS WITH POSITIVE AVERAGE PRICE SPREADS:
GENERATION LOCATIONS VERSUS DEMAND LLOCATIONS BEFORE VERSUS AFTER FT

Notes: This figure plots the proportion of locations with at most the number of hours of day with positive average
day-ahead/real-time price spreads listed on the x-axis. Separate empirical distribution functions are plotted for gen-
eration locations versus demand locations before versus after the introduction of FT. To calculate an observation
underlying these empirical distribution functions, we compute the average day-ahead/real-time price spread across
days-of-sample for each location and each hour of the day for both the pre-FT and post-FT sample periods. Then,
we count the number of hours of day that the average price spread is positive for each location in each of the two
sample periods. Finally, we plot the empirical distribution functions associated with these location-/sample period—
level counts separately for generation locations and demand locations before versus after FT.

to generation locations.d This result is consistent with two features of California’s
multisettlement market. First, retailers must submit territory-level bid curves into the
day-ahead market, limiting their ability to exercise market power in the day-ahead
market at specific demand nodes. Second, with few exceptions, only suppliers are
able to influence real-time prices because only they can submit location-specific
offer curves to the real-time market.?’ The results in Figure 3 imply that electric-
ity suppliers were successful at raising real-time prices above day-ahead prices for
more hours of the day at locations where they owned generation units relative to
demand locations both before and after FT.

C. Volatility in Prices before versus after Financial Trading

If day-ahead prices at all locations are closer to real-time prices at all locations,
then the real-time output levels of generation units are also likely to be closer to the
day-ahead schedules of these generation units. This implies less need for large devi-
ations between day-ahead scheduled output and actual output in the real-time mar-
ket, which leads to a lower variance in real-time prices. Consequently, FT should
reduce both the variance of day-ahead/real-time price spreads and the variance of
real-time prices. To test this hypothesis, we compare estimates of the covariance

261n online Appendix Section C.2, we show that, for both the pre-FT and post-FT sample periods, we fail to
reject the null hypothesis that the EDF of demand locations first-order stochastic dominates the EDF of generation
locations. Moreover, we reject the null hypothesis that the EDF of generation locations first-order stochastic domi-
nates the EDF of demand locations for both the pre-FT and post-FT sample periods.

27Real-time prices are determined using the real-time offer curves of generation units and a small amount of
dispatchable demand to meet actual locational demands throughout the transmission network.
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matrices of day-ahead/real-time price spreads and real-time prices before versus
after FT.

Let X, , = Ph 0 — Ph 4 be the difference between day-ahead and real-time prices
in hour of the day 4 in day-of-sample d at a location. Suppressing the subscripts asso-
ciated with location and sample period, let X; = (X;1.Xy0, - . ., X 24) be the 24 x 1
vector composed of realized day-ahead/real-time price spreads for day-of-sample
d. Each day, this vector is assumed to be drawn from a distribution with contem-
poraneous covariance matrix A” or AP*" depending on whether the sample period
considered is before or after the introduction of FT.

The variance of price spreads is larger “pre-FT” relative to “post-FT” if the dif-
ference between the covariance matrices for the pre-FT versus post-FT sample
periods is a positive semidefinite matrix (i.e., A — AP*" > 0). We construct a
statistical test of this null hypothesis by finding the eigenvalues {&; 4 associated
with Adiff = AP — APos' We test the joint null hypothesis that all of these eigen-
values are greater than or equal to zero using the methodology developed by Wolak
(1989).%8

We also calculate the test statistic associated with the null hypothesis that price
spreads are more volatile post-FT relative to pre-FT (i.e., AP*" — AP™ is a positive
semidefinite matrix). Finally, we perform tests of the same two null hypotheses
focusing on the variance of real-time prices before versus after FT rather than the
variance of day-ahead/real-time price spreads.

We conduct both sets of tests for 762 generation locations and 3,861 demand
locations. [Table 1| presents the proportion of locations for which we fail to reject
a 0.05 size test of each of our null hypotheses, separately for locations associated
with generation units (“Generation”) versus locations not associated with genera-
tion units (“Demand”). The results of this table indicate that there are no discernible
differences between generation versus demand nodes in the proportion of locations
for which we reject any specific null hypothesis.

Thus, focusing on the rows corresponding to total proportions (“Total”), we fail
to reject the null hypothesis that the volatility of price spreads is lower (higher) after
FT is introduced for 97 percent (0.6 percent) of locations. Combined, these results
provide evidence that the volatility of day-ahead/real-time price spreads fell at both
generation and demand locations after the introduction of FT. This is consistent with
the intuition that allowing purely financial participation results in day-ahead gener-
ation schedules that more closely resemble real-time operating levels.

The last column of Table 1 reports the results of these tests for the vector of
real-time prices. We fail to reject the null hypothesis that real-time prices are more
volatile pre-FT relative to post-FT for roughly 97 percent of nodes and reject the

28 Qur test statistic is 7S = min{)o}(fl — z)'[var(Q ()] (€2 — z), where ) is the 24 x 1 vector containing the
eigenvalues {& } 1. The covariance matrix var(Q) is estimated using a moving block bootstrap procedure. We
construct L moving block resamples separately for the sample periods before versus after FT. For each resample
b € {1,2,...,L}, we estimate the contemporaneous covariance matrices associated with day-ahead/real-time
price spreads in each sample period (i.e., A b " and APUH) This allows us to compute f\diff = /A\pn Apm as well as
the 24 eigenvalues associated with Ag'“ We denote the 24 x 1 vector of these eigenvalues Qb Finally, our
estimate of the covariance matrix associated with €2 is ( (/L)Y f (- Q)(Qh — €)', where () is estimated using

data from the entire sample period.
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TABLE 1—PROPORTION OF LOCATIONS WHERE VOLATILITY TEST Is NOT REJECTED

Location type Price spread Real-time price
Hy: AP — AP*" > 0 Generation 0.971 0.963
Demand 0.974 0.966
Total 0.974 0.966
Hy: AP*" — AP > 0 Generation 0.005 0.001
Demand 0.006 0.003
Total 0.006 0.003

Notes: This table reports the proportion of locations for which we fail to reject different null
hypotheses regarding the volatility of day-ahead/real-time price spreads as well as the volatil-
ity of real-time prices before versus after the introduction of FT. We report these proportions
separately for locations associated with generation units (“Generation™) versus locations not
associated with generation units (“Demand”). We also report the total proportions aggregated
across all pricing locations (“Total”).

null hypothesis that real-time prices are more volatile after FT for almost all nodes.
This constitutes additional evidence that the introduction of FT reduced the number
of costly adjustments to output relative to day-ahead schedules necessary to meet
real-time demands at all locations.

IV. Expected Profit-Maximizing Financial Trading with Transactions Costs

In this section, we develop a model of expected profit-maximizing trading of the
24 x 1 vector of hourly day-ahead/real-time price differences accounting for the
presence of a per MWh trading charge. We use this model to construct two indices
that quantify how well the vector of day-ahead prices reflects the vector of real-time
prices. We then compute these two indices before and after FT.

Before presenting our model, we note that trading strategies based on the first
lag of the vector of day-ahead/real-time price differences are not feasible because
market participants submit their offers to the day-ahead market for day ¢ before the
vector of day-ahead /real-time price differences for day ¢ — 1 is realized.?” Market
participants can thus only condition their trading strategies on the vector of realized
price differences from two or more days prior.

In online Appendix Section C.3, we formulate and implement a test of the null
hypothesis that the elements of the autocovariance matrices between the current
vector of day-ahead/real-time price spreads and the second through tenth lags of
this vector are jointly zero. We reject a test of this null hypothesis for over 40 per-
cent of generation and demand locations before FT but fail to reject this same null
hypothesis for close to 95 percent of generation and demand locations after FT. This
suggests that purely financial traders cannot earn significantly more profits by condi-
tioning their trading strategies on realized price spreads from two or more days prior
to the current day.”" For this reason, we consider expected profit-maximizing trad-
ing strategies that do not condition on lags of the vector of daily price differences.

29Bids to the day-ahead market for day 7 must be submitted by 10 am of day 7 — 1.
39See online Appendix Tables C.4 and C.5 for the results when applying this statistical test to the price spreads
faced by California’s three large retailers and location-specific price spreads, respectively.
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A. The Trader’s Problem

In this framework, a financial participant is assumed to buy or sell hourly positions
ay, associated with day-ahead /real-time price spreads X;, ; for each hour % in day d.
Because the trader can condition her positions on the hour of the day, a; can take on
a different value for each h € {1,2,...,24}. Leta = (a;,ay, . ..,ay,)" denote the
24 x 1 vector of hourly positions. Consistent with market rules, the trader chooses
positions for all hours of the day simultaneously.

A positive (negative) value of a;, implies selling (buying) energy in the day-ahead
market and buying (selling) it back in the real-time market. Holding a positive (neg-
ative) position earns revenues if and only if the day-ahead price for hour 4 of day d
is higher (lower) than the real-time price in hour £ of day d. In other words, a trader
earns positive revenue if and only if her position a;, has the same sign as the realized
price spread X, ,. We assume that this trader is small relative to the market so that
her purely financial bids do not affect day-ahead or real-time prices.

Let 1, = E(X,q) = E(PP3) — E(PRy) be the unconditional expectation of
the day-ahead /real-time price spread for hour 4. Define y to be the 24 x 1 vector

composed of (py, i, - - ., f1og)". The trader’s expected profit-maximization problem
is
24 24
(1) maxa’ps — ¢ _|a;| subject to Yal =1,
acR* i=1 i=1
Expected Profits Absolute Position Constraint

where c¢ is the dollar per MWh transaction cost associated with buying or sell-
ing 1 MWh of any combination of these 24 assets. The vector of positions
a*( 1) € R**denotes the solution to the constrained optimization problem described
in equation (1).

The trader pays the same per unit trading cost ¢ regardless of whether she buys
or sells the asset. This is why overall trading costs are calculated based on the sum
of the absolute values of the portfolio weights (i.e., trading costs are ) 7%, |a;|). The
trader’s expected revenue from solving equation (1) is

(2) o(p) = a*(p)'p = he{lg§§24}\uh!-

In words, the trader simply buys or sells one MWh of the asset with the highest
expected payoff in absolute value.

B. Measures of Agreement between Day-Ahead and Real-Time Prices

Our two measures of the extent of agreement between the vector of day-ahead
prices and real-time prices are derived from tests of two null hypotheses: (i) the null
hypothesis that a profitable trading strategy exists (Hy: a*(u)'n — ¢ > 0) and (ii) the
null hypothesis that no profitable trading strategies exist (Hy: a*(u)'u — ¢ < 0). The
first measure, cy,,,.,» is the smallest value of ¢ that would cause rejection of a size 0.05
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test of the first null hypothesis. The second measure, ¢, i$ the largest value of ¢ that
results in rejection of a size 0.05 test of the second null hypothesis.

We estimate these two measures for each pricing location in California for the
sample periods before and after the introduction of FT. Our estimate of the uncondi-
tional expectation of day-ahead/real-time price spreads for each hour of the day is
simply the sample average: i = X = (1/N)Y_Y_,X,. Our estimate of the revenue
from the trader’s optimal strategy, presented in equation (2), is the element of X that
is largest in absolute value, ¢(X) = maxy c (.. “24}|Xh|. Both of our test statistics
are based on the difference between ¢(X ) and the per unit trading cost c.

We cannot use the Delta Method to derive the asymptotic distribution of ¢(X)
because the maximum operator is not differentiable. Instead, we use the method
developed by Fang and Santos (2019) for testing hypotheses involving directionally
differentiable functions of a regular parameter estimate. This method is applicable
because ¢(u) is a directionally differentiable function of the parameter vector p
and the sample average X is a regular estimator of population average ji,.>! Fang
and Santos (2019) proposes a modified bootstrap estimator for the asymptotic dis-
tribution of v'N(p(X) — ¢(10))-

To implement this estimator, we simulate the distribution of ¢(X) using a pro-
cedure based on numerical derivatives developed by Hong and Li (2018). For this
procedure, we first compute moving blocks bootstrap resamples of X with block size
equal to-the largest integer less than or equal to N 13 as recommended by Kunsch
(1989).72 Let the sample average calculated from the b™ bootstrap resample be
denoted X . We next construct

o(X+VN(X ~ X)e) - 9(%)
(3) Zh = €

for b = 1,2,...,B. Hong and Li (2018) demonstrates that the asymptotic distri-
bution of v/N(¢(X) — é(p)) can be approximated by the bootstrap distribution of
7" provided that, as sample size N goes to infinity, € tends to zero but v/Ne tends to
infinity. To satisfy these conditions, we set ¢ = N~'/3, which is the value recom-
mended by Hong and Li (2018).

This estimate of the asymptotic distribution of v/N(¢(X) — ¢(i)) allows us to
compute two test statistics related to the existence of profitable trading strategies
given a per unit trading cost of ¢. To do this, we estimate the distribution of ¢(X)
using the moving blocks bootstrap. In particular, the b resample gives us

) o) = o(x) + Z

31 The sample average X is a regular estimator of population average ji, because v/N(X — 1) is asymptotically
normally distributed.

32 Given a sample {X, Xy, . .., Xy}, each moving blocks bootstrap resample b € {1,2,..., B} is constructed as
follows. First, we partition the data into K nonoverlapping blocks of size M:{B},B,, ...,Bx} = {X1.X,, ..., Xy}
Kyrsts -+ Xonghs -+ o AXpgg—1)+1> - - -» Xgar}- Next, let S be a discrete uniform variable over the integers {1,2, . . ., K},

we construct the b™ bootstrap resample by drawing K integers from § independently and identically and merging
together blocks based on these draws. For example, if we draw {2,5,K, ...,5}, then the bootstrap sample would
be {B,,Bs,Bg, . . ., Bs}. When implementing this procedure, we set M = floor(N'/3) and K = floor(N/M), where
floor(Y) is equal to ¥ rounded down to the nearest integer.



VOL. 15 NO. 2 JHA AND WOLAK: FORWARD COMMODITY MARKETS 313

We use this bootstrap distribution to compute our two measures of the extent of
agreement between the 24 x 1 vectors of the daily averages of day-ahead and
real-time prices. The first, ¢, 1s equal to the fifth percentile of the bootstrap dis-
tribution of ¢(X). The second magnitude, ¢ is equal to the ninetieth percentile
of the distribution of ¢(X).

We call these two summary measures of the extent of agreement between day-ahead
prices and real-time prices “implied trading costs.” A larger value of either ¢, or
Cypper COTTESPONds tO less agreement between day-ahead and real-time prices. We esti-
mate e, and ¢, for the day-ahead /real-time prices associated with each pricing
location for sample periods before and after the introduction of FT.

upper >

V. Estimates of Implied Trading Costs

This section is split into two parts. In the first subsection, we present the distri-
bution across locations of implied trading costs before versus after the introduction
of FT. The next subsection describes how implied trading costs change at locations
with and without electricity generation units after FT is introduced. We find that
implied trading costs fell after FT was introduced, with significantly larger decreases
at demand locations where it was not possible to trade day-ahead/real-time price
differences prior to the introduction of FT.

A. Spatial and Temporal Trends in Implied Trading Costs

Figure 4 plots various percentiles of the across-location distributions of ¢, and
Cupper» Separately for locations associated with generation units (“Generation loca-
tions”) and locations not associated with generation units (“Demand locations”).
Figure 4 shows that the distributions of ¢, and ¢, shift downward after FT
is introduced for both generation locations and demand locations. This indicates
greater agreement between day-ahead and real-time prices at each location after the
introduction of FT.”

Next, we compute the bootstrap distribution of ¢, — ¢, for each of the more
than 4,000 locations that existed both before and after the introduction of FT. The
first row of Table 2 reports the proportion of locations for which we reject a size
0.05 test of the null hypothesis that implied trading costs increased after FT (i.e.,
Hy: ¢y < Cpoq)- We report these proportions separately for generation locations
and demand locations. The second row of Table 2 reports the proportion of locations
for which we reject a size 0.05 test of the null hypothesis that implied trading costs
decreased after the introduction of FT (i.e., Hy: ¢, > ¢,y), again separately for
generation locations and demand locations.

We reject the null hypothesis that implied trading costs increased after the intro-
duction of FT for roughly 39 percent of locations. In contrast, we reject the null
hypothesis that implied trading costs fell after the introduction of FT for less than

331n online Appendix Section A.3.1, we compute implied trading costs using data on the territory-level
day-ahead and real-time prices paid by each of California’s three major retailers. Both measures of implied trading
costs fell after FT was introduced for all three retailers.
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FIGURE 4. NODAL-LEVEL DISTRIBUTION OF IMPLIED TRADING COSTS: BEFORE AND AFTER FINANCIAL TRADING

Notes: This figure plots percentiles of the across-location distribution of ¢y, and ¢,.-. These implied trading
costs are estimated separately for each location for the sample period before financial trading and the sample period
after FT. We plot the percentiles of the across-location distributions of ;. and ¢, separately for locations asso-
ciated with generation units versus demand locations. The box portion of this box and whiskers plot contains all
locations within the twenty-fifth through seventy-fifth percentiles of the distribution of implied trading costs. The
bottom (top) whisker is defined by the smallest (largest) value that is within 1.5 x IQR of the twenty-fifth (sev-
enty-fifth) percentile of the distribution of implied trading costs, where IQR (interquartile range) is the distance
between the twenty-fifth and seventy-fifth percentiles of the distribution. The remaining points are outliers.

TABLE 2—PROPORTION OF LOCATIONS THAT REJECT Cppre < Cpog OR Cppre = Cpog

Total Generation locations Demand locations
Ho:cpre < Cpost 0.389 0.364 0.394
Ho:cpre 2 Cpost 0.009 0.012 0.008
Number of Locations 4,623 762 3,861

Notes: The first row of this table reports the proportion of locations for which we can reject a
size 0.05 test of the null hypothesis that implied trading costs increase after financial trading
was introduced, separately for locations associated with generation units versus demand loca-
tions. The second row of this table reports the proportion of locations for which we can reject
a size 0.05 test of the null hypothesis that implied trading costs fell after FT, again separately
for generation locations versus demand locations.

1 percent of locations. A rejection frequency of 1 percent is consistent with the
null hypothesis being true for all locations because the size of each hypothesis test
is @ = 0.05. Combined, the results suggest that day-ahead prices better reflect
real-time prices at all locations after the introduction of FT.
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B. Heterogeneous Impacts of FT on Implied Trading Costs

As noted in Section IC, prior to the introduction of FT, each supplier could
implicitly trade differences between day-ahead and real-time prices by adjusting
their physical bids; this strategy was only feasible at locations where the supplier
owned generation units. In contrast, retailers could only submit bids at the service
territory level, making it impossible for them to trade day-ahead /real-time price dif-
ferences at specific locations. Consequently, in the absence of purely financial par-
ticipation, we would expect implied trading costs to be higher at demand locations
relative to generation locations because no market participant can adjust its physical
bids to profit from an expected day-ahead/real-time price difference at an individ-
ual demand location. Because the introduction of FT allows any market participant
to take a financial position in the market for day-ahead/real-time price differences
at virtually any location, the reduction in implied trading costs after FT should be
larger for demand locations relative to generation locations.

To test these two hypotheses, we regress our estimate of the implied trading cost
Crower at €ach location before and after FT on a constant, an indicator variable that is
equal to one if the location is associated with a generation unit (“Generation”), an
indicator variable that is equal to one if the implied trading cost is estimated using the
post-FT sample period (“Post FT”), and an indicator variable that is equal to one if
the observation corresponds to a generation location during the post-FT sample period
(“Post FT x Generation”). The unit of observation for this regression is thus a location
in the pre-FT or post-FT sample period. White (1980) standard errors are reported in
parentheses below the coefficient estimates. We run the same regression considering
our estimate of ¢, for each location before and after FT as the dependent variable.

Table 3 presents the estimates from these difference-in-difference regressions.
Focusing first on columns 1 and 5, we see that the coefficient estimate on “Post
FT” is negative for both cy,,,, and c,,... This indicates that the average level of
implied trading costs across locations fell after FT. Moreover, the coefficient esti-
mates corresponding to “Generation” indicate that both ¢;,,,., and ¢, are signifi-
cantly lower for generation locations relative to demand locations prior to FT.*4 This
difference in implied trading costs across generation versus demand locations is
essentially eliminated after FT. Specifically, we fail to reject the null hypothesis
that the sum of the coefficients corresponding to the variables “Generation” and
“Post-FT x Generation™ is zero for both ¢y, and c¢,,,,,. Put another way, as we
expected, the reduction in implied trading costs after FT is larger for demand loca-
tions relative to generation locations.

These results are robust to a variety of alternative specifications. For example,
columns 2 and 6 of Table 3 demonstrate that the results continue to hold if we

341n online Appendix Table A.3, we split generation locations into two categories: “baseload” locations, where
the amount of electricity injected at that location is greater than O in at least 75 percent of hours-of-sample, versus
“peaker” locations, where the amount of electricity injected at that location was greater than 0 in less than 75 per-
cent of hours-of-sample. The results presented in online Appendix Table A.3 indicate that implied trading costs
before FT are lower for baseload generation locations relative to peaker generation locations. This is consistent
with the logic that baseload units that operate more frequently find it less costly to adjust their day-ahead sched-
ules relative to their real-time output in order to trade day-ahead/real-time price differences than peaker units that
operate less frequently.
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TABLE 3—IMPLIED TRADING COSTS BEFORE VERSUS AFTER FT FOR GENERATION VERSUS DEMAND LOCATIONS

Dependent variable: ¢, ., Dependent variable: ¢,
(1 2 ©) 4) ©) (6) () (8)

Post FT x Gen Node 0.508 0.524 0.645 0.166 1.619 1.496 1.655 1.834

(0.114)  (0.106)  (0.085)  (0.210) (0.258)  (0.226) (0.227)  (0.500)
Gen Node —0.536 —0.482 —-0.624 —0.136 —1.363 —1.200 -—1.374 —0.218

(0.107)  (0.099)  (0.072)  (0.199) (0.219)  (0.208)  (0.182)  (0.342)
Post FT —3.494 3329 —1.247 —9.495 —6.659 —6.577 —3.555 —17.182

(0.051)  (0.046) (0.040) (0.083) (0.115)  (0.102)  (0.103) (0.162)
Constant 10.519  10.351 9.124  19.902 18.577 18306 15970  36.248

(0.048)  (0.044) (0.036) (0.079) (0.102)  (0.096) (0.088)  (0.131)
Residualized No No Yes No No No Yes No
Trim top and bottom 1% No Yes No No No Yes No No
Full sample period Yes Yes Yes No Yes Yes Yes No
Six months No No No Yes No No No Yes
Mean of Dep. Var. 8.686 8.614 8.439 15.012 15.083  14.893  14.066  27.532
Std. Dev. of Dep. Var. 2.770 2.770 1.821 5.956 5.920 5.920 4.757 11.314
R? 0.382 0.405 0.106 0.631 0.296 0.349 0.125 0.558
Number of observations 9,486 9,302 9,485 9,440 9,486 9,298 9,485 9,440

Notes: This table reports estimates from difference-in-difference regressions comparing implied trading costs
before versus after the introduction of financial trading for generation locations versus demand locations. The unit
of observation is a location before versus after the introduction of FT. We report White (1980) standard errors in
parentheses. We trim the top and bottom 1 percent of the dependent variable before estimating the regressions for
columns 2 and 6. In columns 3 and 7, implied trading costs are estimated using residualized day-ahead/real-time
price spreads; we residualize price spreads by regressing them on natural gas prices at the PG&E and SCG citygates;
hourly electricity demand; hourly net electricity imports; and three separate controls for the hourly total production
from nuclear, hydro, and renewable sources, respectively. In columns 4 and 8, we estimate implied trading costs
using only data from the six months before and after the introduction of FT.

trim observations corresponding to the top 1 percent and bottom 1 percent of the
distribution of the relevant dependent variable before estimating the regressions.
Moreover, in columns 3 and 7, we residualize hourly day-ahead/real-time prices
spreads at each location before estimating ¢y, and c,,,,... Specifically, we regress
price spreads on natural gas prices at the Pacific Gas and Electricity and Southern
California Gas citygates; hourly electricity demand; hourly net electricity imports;
and three separate controls for the hourly total production from nuclear, hydro, and
renewable sources, respectively. The results based on estimating ¢y, and Cpper
using the residuals from this regression are similar to the results from our primary
specification in columns 1 and 5. This assuages concerns that our findings are driven
by coincident changes over time in factors such as investments in renewables or
falling natural gas prices.

As further evidence against this concern, columns 4 and 8 of Table 3 demonstrate
that the qualitative conclusions drawn from the analysis remain the same if c;,,,,,
and ¢, are estimated using only the six months before and after the introduction
of FT. Longer-run trends in market factors such as changes in natural gas prices and
investment in renewables are unlikely to drive the results estimated for this shorter
13-month sample window.’>

350nline Appendix Figures A.7 and D.1 show that production from renewables and natural gas prices did not
change substantially in the 13-month window around February 1, 2011. Moreover, this shorter window excludes the
closing of the San Onofre nuclear plant in February 2012.
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Summarizing, Table 3 provides statistical evidence consistent with all three of
our hypotheses: (i) implied trading costs are lower for generation locations relative
to demand locations prior to FT, (ii) implied trading costs fell after FT, and (iii) the
reduction in implied trading costs after the introduction of FT was smaller for gen-
eration locations relative to demand locations.

VI. Suggestive Evidence of the Efficiency Benefits of Financial Trading

Section II argues that the introduction of financial trading has the potential to
reduce production costs on days when the solution to the optimization problem
required to clear the real-time market involves many binding operating constraints,
which we call “high-complexity” days. This section provides evidence in support of
this hypothesis.

The section is split into four subsections. The first presents descriptive trends
in each of our outcome and control variables to explore concerns that our results
may be due to changes in economic conditions coincident with the introduction of
FT. The second subsection provides evidence that fuel costs per MWh of gas-fired
electricity production fell after FT was introduced on high-complexity days but
not low-complexity days. This is consistent with the intuition that there is limited
scope for FT to reduce production costs on days when clearing the real-time market
involves few, if any, binding operating constraints.

The third subsection presents estimates from a difference-in-difference frame-
work comparing market outcomes before versus after FT on high-complexity days
versus low-complexity days. We close by focusing on a specific mechanism by
which FT can result in lower production costs on high-complexity days, changes
in the number and type of generation units that start up to meet locational demands
throughout California. Consistent with the two examples in Section II, our results
suggest that quick-start, high-cost units were forced to start up fewer times after the
introduction of FT, leading to lower operating costs on high-complexity days after
FT.

A. Data Sources and Descriptive Trends

Our analysis uses hourly generation unit-level data on input fuel measured in
millions of British Thermal Units (MMBTU) and electricity output in MWh from
the Continuous Emissions Monitoring Systems database administered by the United
States Environmental Protection Agency (US EPA 2009-2012). Our primary analy-
sis focuses on the sample period April 1, 2009 to November 30, 2012. We focus on
gas-fired generation units because coal- and oil-fired sources combined accounted
for only-1.8 percent (0.8 percent) of the electricity produced in California in 2009
(2012).76

The monthly average natural gas price paid by each gas-fired unit is calculated
using transaction-level data on the fuel purchased by US power plants from the

36Fifty-six and 61 percent of in-state electricity production in California came from gas-fired sources in 2009
and 2012, respectively.
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Energy Information Administration (EIA 2009-2012). Specifically, we calculate
the monthly average natural gas price paid by plants supplied by Pacific Gas and
Electricity (PG&E) versus Southern California Gas (SCG). Gas-fired units located
in the PG&E service territory are assigned the gas price corresponding to PG&E,
while gas-fired units located in the Southern California Edison (SCE) or San Diego
Gas and Electricity (SDG&E) service territories are assigned the gas price for SCG.
Online Appendix Section D.2 discusses the construction of natural gas prices and
the assignment of these prices to gas-fired units in more detail.

Each unit’s hourly total input fuel use is multiplied by the relevant natural gas
price to obtain its hourly total fuel cost. We sum the fuel costs and heat energy uti-
lized across units and hours of the day in order to calculate system-wide daily total
fuel costs and fuel use. This allows us to construct our two outcome variables: the
log of daily total fuel cost divided by daily total gas-fired output in MWh and the log
of daily total fuel use per MWh of gas-fired output.’’

Online Appendix Figure A.10 presents the monthly averages of each of our out-
come variables for our sample period. Neither of the market outcomes display clear
upward or downward trends over this time period.’ This provides some comfort
that comparing market outcomes before versus after the introduction of financial
trading will not be confounded by secular time trends in either outcome variable.
Nevertheless, both outcomes exhibit substantial seasonality. The variability induced
by this seasonality can obfuscate comparisons of the outcomes across the sample
periods before versus after FT. We include fixed effects to account for this seasonal-
ity in the model specifications discussed below.

The two market outcomes are also likely to depend on other economic factors that
change over time. We therefore control for the monthly average natural gas prices
paid by power plants in California. Online Appendix Figure D.1 plots the monthly
average natural gas prices paid by plants supplied by PG&E versus SCG over our
sample period. This figure documents that natural gas prices did not fluctuate much
in the six months before and after the introduction of FT, suggesting that gas prices
did not respond to this event. Nevertheless, we believe it is still important to con-
trol for natural gas prices given the substantial increase in gas prices between April
2009 and January 2010 as well as the sizable decline in these prices from July 2011
through March 2012.

Our specifications also control for the logs of daily total electricity demand and
daily total net electricity imports. These data come from the OASIS API operated by
California ISO (California ISO 2009-2012). In addition, we control for the monthly
total output from: (i) nuclear plants, (ii) renewable sources, and (iii) hydroelectric

371n online Appendix Section E.1, we explore changes in the costs of procuring the operating reserves neces-
sary to ensure that electricity supply equals electricity demand at every instant even in the face of unanticipated
changes in physical conditions, such as generation unit outages or transmission outages (Wolak 2019; Buchsbaum
etal. 2022).

38 Online Appendix Table A.4 presents p-values from tests of the null hypothesis that the daily time series of
each outcome variable contains a unit root and finds evidence against this null hypothesis for both variables. This
suggests that both outcome variables are stationary time series.
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units.? These control variables are constructed using data on monthly plant-level
output from the Energy Information Administration (EIA 2009-2012).

Online Appendix Figure A.7 plots monthly total output by type of generation
source, monthly total demand, and monthly total net imports. The decline in output
from nuclear sources beginning in March 2012 is due to the shutdown of the San
Onofre nuclear power plant discussed in Davis and Hausman (2016). In addition,
this figure documents that output from gas-fired units declined between June 2010
and May 2011. This decline is due to reductions in demand coupled with increases
in output from hydroelectric sources. These trends emphasize the importance of con-
trolling for system demand, monthly total output from nuclear plants, and monthly
total output from hydroelectric sources when exploring changes in fuel costs per
MWh of gas-fired output before versus after the introduction of FT.

Online Appendix Figure A.9 plots annual total electricity generating capacity
by type. We see from this figure that there were no major investments in generat-
ing capacity during our sample period. However, this figure documents a steady
increase in the installation of renewable capacity during the latter half of our sample
period as well as the aforementioned retirement of the San Onofre nuclear power
plant. Controlling flexibly for monthly total output from nuclear plants and renew-
ables is important given these trends. Finally, there were no major investments in
electricity transmission capacity in the territory served by California ISO during our
sample period (California ISO 2010, 2011, 2012a, 2013).*"

B. Empirical Strategy

Our empirical strategy compares outcomes before versus after financial trading
on days when the real-time market-clearing optimization problem is more versus
less complex to solve. We consider three indicators of complexity. Our first measure
is the standard deviation across pricing locations and hours of the day of real-time
prices for each day of the sample period. The intuition behind this measure is that
physical operating constraints such as transmission congestion lead to larger devia-
tions in prices across locations on the grid. Days with a larger standard deviation in
real-time prices are thus more likely to be days in which more system operating con-
straints are binding. Our second and third measures of complexity are the level of
daily total real-time demand and the daily total number of times that gas-fired units
started up. The intuition behind these two measures is that transmission and other
operating constraints are more likely to bind during high-demand days when more
units have to start up or ramp up to satisfy demand at locations across California.

This subsection and the next subsection present estimates based on measur-
ing complexity using either daily total demand or the daily standard deviation in
real-time prices. We discuss results based on daily total starts in the final subsection.

39The classification “renewables” includes wind, solar, and geothermal sources as well as hydro sources with
capacity less than 30 MW.

40The California ISO provides a list of transmission upgrades in each year in its annual report. The list for
2009 is on page 5.26 (California ISO 2010), for 2010 is on pages 125-26 (California ISO 2011), and for 2011 is
on page 146 (California ISO 2012a). There were no notable transmission upgrades in 2012 (California ISO 2013).



320 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY MAY 2023

In online Appendix Section F.1, we show that our three indicators of complexity
are positively correlated with each other and are positively correlated with fuel costs
per MWh. Moreover, online Appendix Section F.2 provides suggestive evidence that
the aggregate marginal cost curve is far steeper at high levels of the residual demand
to be served by the gas-fired fleet. Combined, the descriptive evidence presented in
online Appendix Sections F.1 and F.2 suggests that suppliers are forced to deploy
significantly higher marginal cost units when our three indicators of complexity are
large. This supports our logic that the potential for production cost savings from
location-specific FT is greatest on high-complexity days.

That being said, there are many concerns with comparing market outcomes before
versus after the introduction of financial trading across high- versus low-complex-
ity days. First, the introduction of financial trading is inherently a market-wide
shock. There is thus no natural “control group” that is completely unaffected by the
change in policy. Consequently, a comparison across high- versus low-complexity
days could understate the full benefits of financial trading to the extent that purely
financial participation also has benefits on low-complexity days.*! In addition, this
comparison is potentially confounded by unobserved factors that vary over time and
differentially impact high-complexity days versus low-complexity days. Indeed, the
descriptive trends discussed in the previous subsection indicate that hydroelectric
production was unusually high in the first part of 2011, while electricity demand was
unusually low during this period.

To explore the importance of these concerns, we compare residualized market
outcomes before versus after the introduction of FT. This approach is similar to
the event study models commonly employed in finance (MacKinlay 1997; Eckbo
2008). One of the primary considerations in this literature is the length of the win-
dow around the “event.” Informed by the descriptive trends discussed above, we
residualize market outcomes using regressions estimated on the full sample period.
This allows us to better account for seasonality as well as idiosyncratic changes in
economic conditions such as the unusually high levels of hydroelectric production
in the first part of 2011.

We consider the following regression model:

(5) Yt = O HIGH + 9w + Vy.m

4 K 10
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where Y, is the outcome variable for day-of-sample ¢ in calendar month m of year y.
Depending on specification, either daily total demand or the daily standard deviation
in real-time prices is used to categorize days as high versus low complexity. For a
given measure, a day is deemed to be high complexity if and only if the value of the
measure for the day is above the seventy-fifth percentile of the daily distribution of
this measure across days of the sample period.

“IThat being said, we hypothesize that the operating cost reductions from introducing FT are likely to be small
on low-complexity days for the reasons noted in Section II.
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Equation (5) includes an indicator variable for whether the day of sample is a
weekday or weekend (6,,), month-of-sample fixed effects (7, ), as well as separate
sets of calendar month fixed effects for days categorized as “high” versus “low”
complexity days (a,, yign)- In addition, we control for the variables in X,: the log
of daily total electricity demand, the log of daily net electricity imports, the log of
monthly average natural gas prices paid by power plants in California ISO, as well
as logs of total monthly production from (i) renewables, (ii) nuclear sources, and
(iii) hydro sources. Specifically, we center each variable in X, at its sample mean.
For each centered variable x in X,, equation (5) includes x, x2, x3, x* and ten sepa-
rate indicators defined using the deciles of the distribution of x.*2 This allows us to
control flexibly for potential nonlinear relationships between the outcome variable
and economic factors, which may be especially important given the unusually high
levels of hydroelectric production and unusually low levels of demand in the first
portion of 2011. In online Appendix Figure E.4, we show that the trends in resid-
ualized outcomes from estimating equation (5) remain similar if we only control
linearly for the variables in X;.

Figure 5 presents the monthly average of the residuals calculated from estimating
equation (5). The outcome considered in the two left panels of this figure is the log
of fuel costs per MWh of gas-fired output, while the two right panels focus on the
log of input energy use per MWh produced. The top two panels measure complex-
ity using daily total demand, while the bottom two panels use the daily standard
deviation of real-time prices across locations and hours of the day. The vertical
black dashed line denotes the introduction of FT. The solid red horizontal lines
plot the overall averages of residuals for low-complexity days taken separately over
the pre-FT and post-FT sample periods. Similarly, the dashed blue horizontal lines
plot overall averages for high-complexity days in the pre-FT and post-FT sample
periods.

For both measures of complexity, Figure 5 indicates that the overall averages of
residualized fuel costs per MWh and residualized input energy per MWh fell after
the introduction of FT on high-complexity days. In contrast, we do not see any sig-
nificant difference in the overall averages of residualized outcomes before versus
after FT on low-complexity days. This is consistent with the mechanism described
in Section II of when we should expect purely financial participation to result in
lower production costs.

Figure 5 also shows that the decrease in residualized outcomes on high-complexity
days after FT does not appear to be driven by preexisting trends in residualized out-
comes prior to financial trading being introduced. That being said, one might be con-
cerned that the post-FT reduction in residualized outcomes on high-complexity days is
driven by low values of the residuals in the first months after February 2011. To assuage
this concern, online Appendix Figure E.3 plots the monthly average residualized out-
comes dropping the six months before and after February 2011. Even after dropping
these months, we see that monthly average residualized outcomes for high-complexity

42 Controlling for deciles of the relevant economic factors is similar in spirit to the specification considered in
Davis and Hausman (2016).
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FIGURE 5. MONTHLY AVERAGE RESIDUALIZED OUTCOMES BEFORE VERSUS AFTER FT

Notes: This figure plots the monthly averages of the residualized outcome for high-complexity days versus low-com-
plexity days. We plot only months with both high-complexity days and low-complexity days. We measure com-
plexity using daily total demand for the top two panels and the daily standard deviation over locations and hours of
real-time prices for the bottom two panels. For a given measure of complexity, a day is defined as being “high com-
plexity” if the value of the measure on the day is above the seventy-fifth percentile of the distribution of this mea-
sure across our sample period. Residuals are calculated based on a daily level regression of the relevant outcome on
separate sets of calendar month fixed effects for high- versus low-complexity days, month-of-sample fixed effects,
an indicator for weekday versus weekend, and the control variables X, described in Section VIB.

days fall after FT, while average residualized outcomes for low-complexity days are
not statistically different across the two time periods.

C. Difference-in-Difference Framework

Figure 5 provides evidence that residualized fuel costs per MWh and residualized
fuel use per MWh fell after FT was introduced on high-complexity days but not on
low-complexity days. Further, this figure suggests that the trends in residualized
outcomes across high- versus low-complexity days are similar before the introduc-
tion of FT. We test this “common trends” assumption formally by regressing the first
difference of each outcome on an indicator for high-complexity days. The results
of this analysis, presented in online Appendix Table E.1, indicate that there is no
statistical difference in the time trends of the two outcome variables on high- versus
low-complexity days prior to the introduction of FT.
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With this evidence in hand, we quantify the difference in each market outcome
on high-complexity days relative to low-complexity days after relative to before the
introduction of FT using the following regression:

(6) Yt = am,HIGH =+ 9w + ’}/y’m + (SDD(HIGHt X POSTFTt)

K 10
+ 2—31 ; (Xk,z - Xk) s¢s,k + l;ek,bl [Xi: € BINg,|| + us

where we define HIGH, to be an indicator that is equal to one if and only if the rele-
vant indicator of complexity on day-of-sample ¢ is above the seventy-fifth percentile
of the distribution of this measure across our sample period. The independent vari-
able of interest is HIGH, x POSTFT,. This variable captures the change in outcome
after the introduction of FT on high-complexity days relative to low-complexity
days.

We control for the set of variables X, in the same way as in equation (5). As
before, we include separate sets of calendar year fixed effects for high-complexity
days and low-complexity days (o, mcn), weekend versus weekday fixed effects
(6,,), and month-of-sample fixed effects (-,,,). Standard errors are clustered by
week-of-sample.

Table 4 presents the estimates from the difference-in-difference framework. For
the first four columns of this table, we define high-complexity days using daily
total demand; the last four columns present results based on defining high-com-
plexity days using the daily standard deviation in real-time prices. Column 1 of the
top panel of Table 4 indicates that average fuel costs per MWh fell by 2 percent
after the introduction of FT on relatively high-demand days. Aggregating across
all of the power plants in our sample, this 2 percent decrease in fuel costs per
MWh corresponds to a $16.6 million reduction in the annual fuel costs incurred on
high-demand days. Similarly, we find a 1.5 percent reduction in average input heat
energy per MWh on high-demand days after FT was introduced (see column 1 of
the bottom panel of Table 4). A 1.5 percent decrease in thermal energy per MWh
translates into an annual reduction in CO, emissions of 160,635 tons on high-de-
mand days.

Columns 5-8 of Table 4 present estimates based on defining high-complexity
days as days above the seventy-fifth percentile of the distribution of the daily stan-
dard deviation in real-time prices. The estimated reductions in fuel costs per MWh
and input energy use per MWh remain precisely estimated for this alternative indi-
cator of complexity. In addition, columns 2 and 5 of Table 4 demonstrate that the
results remain similar if we trim observations corresponding to the top and bottom
1 percent of the distribution of the outcome variable. Moreover, columns 3 and 6
indicate that the estimates remain precisely estimated if we trim observations corre-
sponding to the top and bottom 1 percent of the distribution of the residualized out-
come, where outcomes are residualized using equation (5). Combined, columns 2,
3, 5, and 6 assuage concerns that the estimates are driven by outliers either in the
outcome or the residualized outcome. Finally, for columns 4 and 8, we exclude
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TABLE 4—DIFFERENCE-IN-DIFFERENCES: CHANGES AFTER FT ON RELATIVELY HIGH-COMPLEXITY DAYS

(1) (2) (3) 4) (5) (6) (7) (8)

Panel A. Dep. var.: log fuel cost per MWh
HIGH, x POSTFT, -0.020 -0.019 -0.015 -0.018 -0.013 -0.012 -0.010 -0.015
(0.005)  (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004)

R? 0.963 0.963 0.971 0.957 0.961 0.962 0.970 0.955
Mean of dep. var. 3.680 3.679 3.677 3.680 3.680 3.679 3.677 3.680
Number of observations 1,340 1,313 1,313 1,340 1,340 1,313 1,312 1,340

Measure: Total demand
Measure: SD RT price
Trimmed dep. var.?
Trimmed res. dep. var.?
No nonlinear controls

ZzZz~<
Zz <z~
Z=<ZZ~<
=227~
277~ Z
ZZ A< Z
ZKZKZ
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Panel B. Dep. var.: log input energy use per MWh
HIGH, x POSTFT, -0.015 -0.014 —-0.012 —-0.014 —-0.013 —0.012 —0.009 —0.014
(0.005)  (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005)

R? 0.729 0.714 0.775 0.688 0.722 0.707 0.773 0.680
Mean of dep. var. 2.051 2.050 2.049 2.051 2.051 2.050 2.049 2.051
Number of observations 1,340 1,314 1,314 1,340 1,340 1,314 1,312 1,340

Measure: Total demand
Measure: SD RT price
Trimmed dep. var.?
Trimmed res. dep. var.?
No nonlinear controls

Z2z2z~
Zz <z~
ZZzZ~<
= ZZ'Z~
ZZ2Z~Z
ZZ -~ Z
Z~KZKZ
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Notes: This table presents the difference-in-difference estimates of the change in outcome after the introduction of
financial trading on high-complexity days relative to low-complexity days. The unit of observation for these regres-
sions is day-of-sample. The dependent variable considered in the top (bottom) panel of this table is the log of fuel
costs per MWh (the log of input energy per MWh). For the first four columns of each panel, the indicator variable
HIGH, is equal to one if and only if the daily total demand on day ¢ is higher than the seventy-fifth percentile of the
distribution of daily total demand across our sample period. For the last four columns, HIGH, is equal to one if the
daily standard deviation of real-time prices over locations and hours in day ¢ is greater than the seventy-fifth per-
centile of the distribution of daily standard deviations. All specifications include separate sets of calendar month
fixed effects for high- versus low-complexity days, month-of-sample fixed effects, an indicator for weekday versus
weekend, and the control variables X, described in Section VIB. In columns 2 and 6 (columns 3 and 7), we trim the
top 1 percent and bottom 1 percent of observations based on the dependent variable (dependent variable residual-
ized using equation (5)). In column 8, we exclude the nonlinear functions of the variables in X; from the regression.
Standard errors are clustered by week-of-sample and are reported in parentheses.

the quadratic, cubic, and quartic terms for each (centered) control variable in X; as
well as the ten separate indicators defined based on the deciles of the variable. The
estimates presented in columns 4 and 8 are similar to those presented in the other
columns, suggesting further that our results are not driven by nonlinear relationships
between the control variables and the outcome.

In online Appendix Tables E.2 and E.3, we define high-complexity days based on
the fiftieth, sixtieth, seventieth, eightieth, or ninetieth percentiles of the distribution
of the relevant indicator of complexity. The estimated reductions in fuel cost per
MWh and input energy use remain precisely estimated regardless of the indicator
of complexity considered or the cutoff used to define high-complexity days. These
estimated reductions generally increase in absolute value as the cutoff increases,
providing suggestive evidence that the per MWh benefits from purely financial par-
ticipation are larger on days when it is more difficult to find the least-cost combina-
tion of real-time output levels of all generation units.
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D. Changes in Total Starts as a Measure of Complexity

In the first example in Section II, purely financial trades resulted in real-time
demand being satisfied by a long-start unit with lower marginal costs rather than a
quick-start unit with higher marginal costs. Purely financial trades are more likely
to lead to changes in which units are dispatched when a significant number of oper-
ating constraints bind in real time. Based on this intuition, we hypothesize that the
number of units that must start up to meet daily total demand on high-complexity
days falls after the introduction of FT. Moreover, we expect these reductions in
starts to be more pronounced when focusing on units with shorter start-up times
but higher marginal costs rather than units with longer start-up times but smaller
marginal costs.

Exploring our first hypothesis, online Appendix Table F.2 documents how the
number of starts by gas-fired units per MWh of gas-fired output changes after FT
on days when clearing real-time markets is relatively complex. We consider two
different indicators of complexity: (i) daily total demand and (ii) the daily standard
deviation across locations and hours in real-time prices. For both measures, we find
that the number of starts per MWh decreases after FT was introduced on high-com-
plexity days.

As discussed above, FT potentially influences not just the number of units that
start up but the type of units that start up. As evidence of this, online Appendix
Table F.3 documents that the number of starts by high—variable cost units falls rela-
tive to the number of starts by low—variable cost units on high-complexity days after
FT is introduced.™ This result holds for both of the indicators of complexity dis-
cussed above. This suggests that purely financial participation potentially impacts
production costs both through reductions in starts and changes in the type of units
that start up.

We isolate how production costs adjust to changes in the type of units that start
up after FT using a difference-in-difference framework similar to the one specified
in equation (6). Specifically, we estimate how production costs change after FT on
days with a larger versus smaller number of starts. Days are defined to have a high
number of starts if the daily total number of starts by gas-fired units is above the X
percentile of the daily distribution of starts; we consider the fiftieth, sixtieth, seven-
tieth, eightieth, and ninetieth percentiles of daily total starts as potential cutoffs. The
results from this specification are presented in online Appendix Table F.1. We find
that fuel costs per MWh and input energy use per MWh fall by roughly 1 percent
after FT on days with a high number of starts relative to days with a low number of
starts. Combined, these results suggest that (i) purely financial trades lead suppliers
to shift toward utilizing lower-cost units rather than starting up high-cost units to
meet real-time locational demand and (ii) this shift is associated with meaningful
reductions in aggregate production costs.

43 A unit is categorized as high (low) variable cost if its aggregate fuel cost divided by its aggregate output is
above (below) the median of this magnitude across units.
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VII. Implications for Electricity Market Design

In this paper, we formulate a new statistical test of the null hypothesis that expected
profits can be earned by trading differences between forward and spot commodity
prices that accounts for the presence of transaction costs. Inverting this test, we pro-
vide evidence that day-ahead prices better reflect real-time prices after the introduc-
tion of financial trading. This post-FT increase in the agreement between day-ahead
and real-time prices is more pronounced at demand locations relative to generation
locations. This outcome is consistent with the fact that suppliers had the limited
ability to trade day-ahead /real-time price differences at locations where they owned
generation units before FT. In contrast, retailers could only submit service territory—
level bids, which made it impossible to trade day-ahead /real-time price differences
at specific demand locations prior to FT.

The second half of the paper explored the extent to which daily total production
costs and input fuel use changed after the introduction of FT. Our empirical strategy
is based on the hypothesis that purely financial participation is likely to result in
reductions in production cost when a significant fraction of transmission network
and system operating constraints are likely to bind in the real-time market. This is
because generation unit owners must make irreversible sunk commitments to start
up their units in the day-ahead market in order for these units to be available to pro-
duce the following day. The process of finding the least-cost combination of units
to start up is significantly more complex when many operating constraints bind in
real time. Under these conditions, financial participants trading day-ahead /real-time
price differences at thousands of locations in the transmission network have the
potential to yield lower cost solutions.

We provide suggestive evidence within an event study framework consistent with
this hypothesis. Specifically, our results indicate that residualized fuel cost per MWh
of gas-fired output and input fuel use per MWh of gas-fired output fell after financial
trading was introduced on days when the complexity of the real-time market-clear-
ing problem was high but not on days when complexity was low. This is true regard-
less of whether complexity is measured using daily total demand, the daily standard
deviation across locations and hours in real-time prices, or the total number of daily
starts. Finally, using a difference-in-difference framework, we estimate that fuel
costs per MWh (input energy use per MWh) fell by 2.0 percent (1.5 percent) after
the introduction of financial trading on high-demand days relative to low-demand
days. Decreasing fuel costs per MWh by 2 percent on high-demand days would
result in a $16.6 million reduction in annual total fuel costs on average.

Our results have important implications for the design of wholesale electricity
markets with large shares of intermittent renewable resources. As the share of elec-
tricity demand met by intermittent renewables in a region grows, system operators
are likely to be required to impose more operating constraints on day-ahead and
real-time markets in order to maintain supply and demand balance throughout the
day.* Controllable generation resources with positive start-up costs are also likely

#For example, the California ISO implemented a flexible ramping product constraint to ensure that there is
sufficient available output from controllable generation capacity when output from solar resources declines in the
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to start up and shut down more frequently because intermittent renewables can start
and stop producing with very little advance notice (Schill, Pahle, and Gambardella
2017). An increasing fraction of transmission network constraints are also likely
to bind in real time as the percentage of electricity production from wind and solar
resources distributed across the grid increases. The location-specific bids and offers
submitted by purely financial participants can reduce day-ahead/real-time price dif-
ferences caused by day-ahead uncertainty in intermittent renewable output. These
purely financial bids and offers can also ensure that the least-cost combination of
controllable resources are available to compensate for fluctuations in real-time out-
put from intermittent renewables on high-complexity days.

It is generally acknowledged that investment in renewables must be coupled
with investments in electricity storage in order to substantially reduce the carbon
emissions from burning fossil fuels to produce electricity. Storing excess renewable
energy and withdrawing it when little renewable energy is being produced can help
ensure that electricity demands across the grid are satisfied in settings with a large
share of intermittent renewable generation.™” However, it is unclear precisely how
to utilize a portfolio of storage resources to reduce the cost of serving demands at
all locations in the transmission network. The actions of purely financial partici-
pants have the potential to result in real-time injection and withdrawal actions by
storage resources that lower the cost of serving real-time locational demands. The
intuition discussed in this paragraph and the previous one suggest that it is increas-
ingly important to foster purely financial participation in multisettlement locational
marginal pricing markets as regions across the United States and around the world
take steps to transition away from fossil fuel-fired production in favor of low-carbon
intermittent renewable resources.

The degree of financial participation in the day-ahead market is tied to the per unit
costs of trading in the market. With this motivation in mind, we use our estimates
to provide a back-of-the-envelope calculation of the benefits from reducing the per
unit costs of trading in California’s wholesale electricity market. Specifically, our
estimates of implied trading costs fell by $3.41 per MWh on average after financial
trading was introduced.*® We also estimate that fuel costs per MWh decrease by
76 cents on high-demand days relative to low-demand days after purely financial
participation was allowed. Taken at face value, our estimates thus imply that a 5 cent
reduction in transaction costs corresponds to a roughly 1.11 (= 5 x (0.76/3.41))
cent reduction in fuel costs per MWh on high-demand days on average. However,
there is substantial heterogeneity across locations and days in our estimates of the
costs and benefits from financial trading. This suggests that the efficiency gains from
reducing transaction fees would likely be even larger if these fees were allowed to

early evening. For more information, see http://www.caiso.com/informed/Pages/StakeholderProcesses/Completed
ClosedStakeholderInitiatives/FlexibleRampingProduct.aspx.

45 For example, solar resources produce only during the day when the sun is shining. In contrast, wind resources
in California typically produce the most energy during the early morning and late evening.

46 The average across all nodes of the fifth percentile of the bootstrapped distribution of the maximum over
hours of absolute average day-ahead /real-time price spreads is 10.43 (7.02) for the pre-FT sample period (post-FT
sample period).
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vary by location and time in order to reflect differences in the expected benefits from
financial trading across locations and days.
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A Additional Tables and Figures

A.1 Additional Tables and Figures: Financial Participation

Appendix Table A.1 documents that physical participants account for only roughly
4% of financial trading (FT) volumes and less than 0.5% of net revenues from financial
trades in 2012.47 It is thus unlikely that physical participants have better information
than financial participants as it relates to profiting from expected day-ahead/real-time
price differences. The fact that physical participants represent such a low percentage
of trading volumes also makes it unlikely that they use purely financial bids to hedge

against day-ahead price and demand uncertainty.

The left panel of Appendix Figure A.1 plots the monthly average hourly volume
of purely financial trades submitted and cleared in the day-ahead market over the
period October 2011 to December 2012. The right panel plots the average for each
hour of the day of trading volumes submitted and cleared for this same time period.
These panels document that the absolute net volume of financial trades submitted and
cleared is larger during the summer months and in the evening, both time periods when
generation unit and system operating constraints are more likely to bind in the real-
time market. That being said, the changes in financial trading volumes across months
and hours documented in Appendix Figure A.1 are relatively small, especially when
compared to the large increase in forward market liquidity due to the introduction of

financial trading.

4TThis table is reproduced from CAISO’s 2012 Annual Report (CAISO (2012a)).



Table A.1: Financial Trading Volumes and Revenues by Participant Type in 2012

Average Hourly Megawatts
Trading Entities Virtual Demand Virtual Supply Total

Financial 1,049 757 1,807
Marketer 467 374 841
Physical Generation 61 70 131
Physical Load 8 36 45

Revenues (Million Dollars)
Trading Entities Virtual Demand Virtual Supply Total

Financial 31.2 18.7 49.9
Marketer 6.8 -0.3 6.5
Physical Generation 1.8 0.0 1.8
Physical Load -1.1 -0.5 -1.6

Notes: This is Table E.1 from CAISO’s 2012 Annual Report (CAISO (2012a)). Financial
entities are defined as “participants who control no physical power, do not serve any load, and
participate in only the convergence bidding and congestion revenue rights markets.” In contrast,
generation unit owners are in the “Physical Generation” category while electricity retailers are
in the “Physical Load” category.

Figure A.1: Monthly and Hourly Averages of Trading Volumes
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Notes: The left panel of this figure plots the monthly average of the hourly volume of trades
submitted and cleared in the day-ahead market over the period October 2011 to December 2012.
Trades are split by whether the offer corresponded to buying electricity (virtual demand) or
selling electricity (virtual supply) in the day-ahead market. The right panel of this figure plots
the average for each hour of the day of trading volumes submitted and cleared, once again split
out by virtual supply versus virtual demand. These figures are from page 103 of CAISO (2012a).



A.2 Day-Ahead and Real-time Prices by Service Territory

California is home to three major investor-owned utilities: Pacific Gas and Elec-
tric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric
(SDG&E). Appendix Figure A.2 presents a map of the territories served by each of

California’s investor-owned utilities.

Appendix Figure A.3 presents monthly average day-ahead and real-time prices
paid by each of California’s three major investor-owned utilities.*® Specifically, the
top left panel, the top right panel, and the bottom left panel plot the quantity-weighted
average of prices over locations in the territories served by PG&E, SCE, and SDG&E,
respectively. The bottom right panel of Appendix Figure A.3 plots the monthly aver-
age day-ahead price minus the monthly average real-time price for each of the three
utilities. A vertical dashed black line is placed at February 2011 to indicate that finan-
cial trading was introduced in California’s wholesale electricity market on February 1,
2011. It is immediately apparent from this figure that: (1) before FT, day-ahead prices
are consistently below real-time prices on average and (2) the average day-ahead /real-

time price spread is smaller in absolute value after February 1, 2011.

Appendix Figure A.4 presents daily average day-ahead /real-time price spreads for
each of the 24 hours of the day along with their pointwise 95% confidence intervals.
As before, we focus on PG&E, SCE, and SDG&E. There are separate plots for the

sample periods before versus after F'T is introduced.

Appendix Figure A.4 demonstrates that day-ahead/real-time price spreads are
larger in absolute value before the introduction of F'T for all three of the utilities. For
example, before FT, day-ahead prices for PG&E are much lower than real-time prices
on average for the hours of 8PM to 12AM. Indeed, prior to FT, the 95% confidence
interval around average price spreads does not include zero for many hours of the day

for all three utilities. In contrast, after FT, the 95% confidence interval covers zero

48 As noted in Section I.C, these prices are quantity-weighted averages of the locational prices in each
utility’s service territory. Hourly day-ahead and real-time prices for each utility can be downloaded
from the OASIS APT administered by California’s Independent System Operator (CAISO, 2009-2012).



Figure A.2: Territories Served by California’s Three Major Investor-Owned Utilities
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Notes: This is a map of the territories served by each of the three major investor-owned electric
utilities in California. These three utilities are Pacific Gas and Electric (PG&E), Southern
California Edison (SCE), and San Diego Gas and Electric (SDG&E). This map is reproduced
from FERC (2015).

for the vast majority of hours of the day for each of the utilities.

These plots also demonstrate that day-ahead prices are lower than real-time prices
on average for the majority of hours of the day for all three utilities prior to FT. This is
consistent with the results in Borenstein et al. (2008), which argues that large retailers
in California withheld demand from the day-ahead market in order to lower day-ahead
prices prior to FT. This strategy was likely to increase the utility’s profits because it
purchased the bulk of its energy from the day-ahead market. Day-ahead/real-time

price spreads do not seem to be persistently negative or persistently positive after F'T.

In Appendix Section C.1, we demonstrate that the post-F'T reduction in average
day-ahead /real-time price differences is statistically different from zero. As shown in
Section III.C, the volatility of both day-ahead/real-time price spreads and real-time
prices fell after the introduction of FT. The reduction in both the mean and volatility
of price spreads after February 1st 2011 is consistent with day-ahead prices better

reflecting real-time prices after F'T was introduced.



Figure A.3: Monthly Average Day-Ahead and Real-Time Prices By Service Territory
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Notes: The top left, top right, and bottom left panels of this figure present the monthly average
day-ahead price and the monthly average real-time price paid by PG&E, SCE, and SDG&E
respectively. The bottom right panel presents the monthly average day-ahead price minus the
monthly average real-time price for each of the three aforementioned electric utilities.



Figure A.4: Hourly Average Day-Ahead/Real-Time Price Spreads: Before and After
Financial Trading
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Notes: This figure presents the hourly average day-ahead price minus the hourly average real-time price for the
following three electric utilities: Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San
Diego Gas and Electric (SDG&E). We plot hourly average day-ahead/real-time price spreads separately for the
sample periods before versus after financial trading was introduced. This figure also includes the pointwise 95%
confidence interval associated with the average day-ahead/real-time price spread for each hour of the day.



A.3 Additional Tables and Figures: Implied Trading Costs
A.3.1 Results By Service Territory

Appendix Table A.2 reports estimates of our two measures of implied trading costs
before and after the implementation of F'T for the day-ahead/real-time price spreads
corresponding to the territories served by PG&E, SCE, and SDG&E. Recall that,
as discussed in Section IV.B, ¢jouer is the smallest value of per-unit trading cost for
which we can reject the null hypothesis that a profitable strategy exists while cypper
is the largest value of trading cost for which we can reject the null hypothesis that
no profitable trading strategy exists. Appendix Table A.2 demonstrates that our
estimates of Cjower and cypper are substantially lower after the introduction of financial

trading for all three utilities.

The top left panel, the top right panel, and the bottom middle panel of Appendix
Figure A.5 plots the bootstrap distributions of implied trading costs corresponding
to the service-territory-level day-ahead and real-time prices paid by PG&E, SCE and
SDG&E respectively. We plot separate distributions for the pre-F'T sample period in
purple and the post-FT sample period in green. The solid vertical lines on each graph
in this figure denote our estimated values for ¢jpyer (in red) and cypper (in blue) for the
pre-F'T sample period while the dashed vertical lines denote our estimated values for

Clower aNA Cypper for the post-FT sample.

All three panels of Appendix Figure A.5 indicate that both cjpper and cypper fell
substantially after the introduction of financial trading. That being said, Appendix
Figure A.6 presents results from a formal test of the null hypothesis that ¢, and

Cupper Temained the same after financial trading was introduced.

Specifically, Appendix Figure A.6 plots the bootstrap distribution of the difference
in implied trading costs for each utility before versus after financial trading. The left
vertical line in this figure is the 10th percentile of the distribution of cp.. — ¢pos and

the right vertical line is the 90th percentile of this distribution. If the 10th percentile



Figure A.5: Bootstrap Distribution of Implied Trading Costs For Each Service
Territory: Pre-FT in Purple and Post-FT in Green
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Notes: This figure plots the bootstrap distributions of implied trading costs for sample periods
before versus after the introduction of financial trading (“FT”) in purple and green respectively.
The top left panel, the top right panel, and the bottom middle panel of this figure focus on
the implied trading costs associated with the day-ahead/real-time price spreads faced by PG&E,
SCE, and SDG&E respectively. The solid vertical lines on each graph in this figure denote our
estimated values for ¢joyper (in red) and cypper (in blue) for the pre-FT sample period while the
dashed vertical lines denote our estimated values for cjoyer and cypper for the post-FT sample.
Implied trading costs cipwer and cypper are defined in Section IV.B.
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Table A.2: Implied Trading Costs by Territory (in USD/MWh)

Utility  Before FT  After FT

Lower 5% C.I. PG&E 8.518 6.614
(Clower) SCE 11.995 7.050
SDG&E 16.217 7.471

Upper 5% C.I. PG&E  14.297 10.600
(Cupper) SCE 19.858 12.166
SDG&E  31.939 12.961

Notes: This table presents the implied trading costs estimated using the modeling framework
discussed in Section IV. We estimate implied trading costs separately for each utility service
territory for the sample periods before versus after the introduction of FT. The three service
territories considered in this table correspond to California’s three major electric utiilties: PG&E,
SCE, and SDG&E.

of this distribution is greater than zero, then we can reject the null hypothesis that
Core < Cpost at & 10% significance level. Similarly, we can reject the null hypothesis
that cpre > Cpost at a 10% significance level if the 90th percentile of the bootstrap
distribution of c,.e — Cpost 15 less than zero. For all three utilities, we reject the null
hypothesis that implied trading costs are higher post-FT relative to pre-FT, but fail
to reject the null hypothesis that implied trading costs are higher pre-FT relative to

post-FT.
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Figure A.6: Bootstrap Distribution of the Difference in Implied Trading Costs
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Notes: This figure plots the bootstrap distribution of the difference in “implied trading costs”
(i.er cpre — cpost), where “pre” indicates the sample period before the introduction of financial
trading (“F'T”) and “post” indicates the sample period after FT. We plot this bootstrap distri-
bution separately for the day-ahead/real-time price spreads paid by each of California’s three
major investor-owned distribution utilities: PG&E, SCE, and SDG&E. The left vertical line on
the graph in red is the 10th percentile of the distribution of cpre — cpost and the right vertical
line in blue is the 90th percentile of this distribution.
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A.3.2 Additional Heterogeneity in Implied Trading Costs By Location

Appendix Table A.3 presents estimates for how implied trading costs changed before
versus after F'T across three types of locations: (1) “baseload” locations where the
amount of electricity injected into the location was greater than zero in at least 75%
of hours in our sample period, (2) “peaker” locations where the amount of electricity
injected into the location was greater than zero in less than 75% of hours-of-sample,
and (3) “demand” locations not associated with a generation unit. The unit of obser-
vation for the regressions presented in Appendix Table A.3 is a location in one of two

sample periods, before FT and after FT.

Columns 1-2 (Columns 3-4) focus on Ciower (Cupper): the Sth (95th) percentile of
the bootstrap distribution of the maximum over hours of the day of the absolute value
of the 24 x 1 vector of hourly average day-ahead/real-time price spreads. For Columns
2 and 4, we trim observations corresponding to the top 1% and bottom 1% of the
distribution of the outcome variable before estimating the regression. White (1980)

standard errors are provided in parentheses.

Appendix Table A.3 tests the intuition that some types of units find it more
costly to adjust their day-ahead schedules relative to their real-time output to profit
from expected differences between day-ahead and real-time prices. Specifically, we
hypothesize that units that operate less frequently find it more costly to inject more
electricity than expected in real-time because these units are typically not needed to
serve demand. This limits the extent to which the owners of these units can adjust
their physical bids to profit from expected day-ahead/real-time price spreads. In
contrast, owners of units that frequently operate can easily adjust how much of their
expected real-time output to sell in the day-ahead versus real-time markets depending

on their expectations about the day-ahead/real-time price spread.

Consistent with this logic, the results presented in Appendix Table A.3 indicate
that implied trading costs prior to the introduction of financial trading were smallest

for baseload locations, followed by peaker locations, with demand locations exhibiting

13



Table A.3: Implied Trading Costs Before vs. After Financial Trading For Baseload
versus Peaker versus Demand Locations

Dep. Var. Clower Cupper
(1) (2) 3) (4)

Post FT x Gen Node x Baseload  0.640 0.493 1.358 1.579
(0.196) (0.186) (0.446) (0.402)

Post FT x Gen Node 0.237 0.311 1.046 0.844
(0.152) (0.139) (0.342) (0.291)

Gen Node x Baseload -0.817  -0.630  -1.647  -1.468
(0.183) (0.174) (0.372) (0.359)

Gen Node -0.198  -0.218 -0.681  -0.589
(0.142)  (0.129) (0.292) (0.272)

Post FT -3.494  -3.329 -6.659  -6.577
(0.051) (0.046) (0.115) (0.102)

Constant 10.519  10.351  18.577  18.306
(0.048) (0.044) (0.102) (0.096)

Residualized Yes Yes Yes Yes

Trim Top and Bottom 1% No No No No

Mean of Dep. Var. 8.686 8.614 15.083  14.893
Std. Dev. of Dep. Var. 2.770 2.770 5.920 5.920
R? 0.383 0.407 0.297 0.351

Number of Obs. 9,486 9,302 9,486 9,298

Notes: This table reports the results from our difference-in-differences specification comparing implied trading
costs before versus after the introduction of financial trading (“FT”) for pricing locations associated with gen-
eration units (“Generation”) versus not associated with generation units. We consider two types of Generation
Locations: locations associated with generation units that produced in over 75% of hours-of-sample (“Baseload”)
versus locations associated with generation units that produced in less than 75% of hours-of-sample (“Peaker”).
The unit of observation for these regressions is a location in the sample period before FT versus after FT. We
report White (1980) standard errors in parentheses. We consider two dependent variables: ¢joyper in the first two
columns and cupper in the last two columns. For Columns 2 and 4, we trim observations corresponding to the top
1% and bottom 1% of the distribution of the outcome variable before estimating the regression.

Variable Definitions: Post FT is an indicator variable that is equal to one if the observation corresponds to the
sample period after F'T. Generation is an indicator variable that is equal to one if the location is associated with
a generation unit. Baseload is an indicator variable that is equal to one if the amount of electricity injected into
the location was greater than zero in at least 75% of hours-of-sample.

14



the largest implied trading costs. The coefficient estimates also suggest that implied

trading costs are the same across baseload, peaker, and demand locations after FT.

Combined, the results presented in Appendix Table A.3 are consistent with the
intuition that, prior to financial trading, the implied trading costs associated with
adjusting real-time output to trade day-ahead/real-time price spreads are smaller for
units that operate more frequently. After F'T, all market participants can trade day-
ahead /real-time price spreads at most locations. Therefore, we no longer find system-
atic differences in implied trading costs across baseload, peaker, and demand locations

after F'T.

A.4 Additional Tables and Figures: Generation and Capacity

Appendix Figure A.7 plots monthly total electricity production by type: gas-fired,
nuclear, renewables, and all hydro.*® We sum only over sources under the operational
control of California’s Independent System Operator (CAISO). Appendix Figure A.7
also includes monthly total net electricity imports. Finally, Appendix Figure A.8
plots monthly total electricity demand.?® A vertical dashed line corresponding to the

introduction of FT is included in both figures.

Appendix Figures A.7 and A.8 document that that there are not systematic up-
ward or downward time trends in electricity production by source type, electricity
imports, or system-wide total demand over our sample period. In addition, there
are not large changes in production from nuclear sources and renewables in the 6-12
months after the introduction of FT, suggesting that production from these sources
did not respond to the implementation of this policy. However, we see a reduction
in output from gas-fired sources coupled with decreases in electricity demand and in-

creases in production from hydroelectric sources in the roughly 6-7 months around

49The classification “renewables” includes wind, solar, and geothermal sources as well as hydro
sources with capacity less than 30 MW. Monthly plant-level data on output come from Form EIA-
923 (EIA, 2009-2012).

S0Hourly data on total net electricity imports and demand can be downloaded from the OASIS
APT (CAISO, 2009-2012).
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Figure A.7: Monthly Total Electricity Production By Source
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Notes: This figure plots monthly total electricity production by type: fossil-fuel-fired, nuclear,
renewables (wind + solar + biomass + biogas + hydro sources less than 30MW), and all hydro.
We sum only over sources under the operational control of California’s Independent System
Operator (CAISO). This figure also plots monthly total net electricity imports. Finally, this
figure includes a vertical dashed line denoting the introduction of financial trading.

February 2011. This highlights the importance of flexibly controlling for hydroelectric
production and demand in our specifications in Section VI that consider how fuel costs
per MWh and input fuel use per MWh change on high complexity days versus low

complexity days after F'T is introduced.

Appendix Figure A.9 plots the annual total electricity generating capacity in Cali-
fornia by source type: fossil-fuel-fired, nuclear, hydro, and wind + solar.®® The sample
period considered in the figure spans the years 2000-2016, with vertical dashed red
lines denoting the years 2009 and 2012. We see from this figure that there were no ma-

jor investments in generating capacity between 2009-2012. That being said, this figure

51'We sum over units of each source type in California using the eGrid database for 2012 provided
by the United States Environmental Protection Agency (USEPA, 1996-2012).
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Figure A.8: Monthly Total Electricity Demand
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Notes: This figure plots monthly total electricity demand. We include a vertical dashed line
denoting the introduction of financial trading.
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Figure A.9: Annual Total Electricity Generating Capacity By Type
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Notes: This figure plots annual total electricity generating capacity by type: fossil-fuel-fired,
nuclear, hydro, and wind + solar. We sum over units of each source type in California using
the eGrid database for 2012 provided by the United States Environmental Protection Agency
(USEPA, 1996-2012). The sample period considered in this figure spans the years 2000-2016,
with vertical dashed red lines denoting the years 2009 and 2012.
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documents a steady increase in the installation of renewable capacity during the latter
half of our sample period. In addition, we see a decrease in nuclear generating capacity
after 2012 due to the retirement of the San Onofre nuclear power plant (Davis and
Hausman, 2016). Based on these trends, all of the specifications considered in Section
VT control flexibly for monthly total production from renewables and monthly total
production from nuclear plants. We also show that the difference-in-differences esti-
mates in Section VI.C remain similar if we drop all days-of-sample after the shutdown

of the San Onofre nuclear power plant.

A.5 Additional Tables and Figures: Fuel Cost and Fuel Use

The left panel of Appendix Figure A.10 plots the monthly averages of the log of daily
total fuel costs incurred by gas-fired plants divided by the daily total output of these
plants. The right panel of this figure plots the monthly averages of the log of daily
total fuel use by gas-fired plants divided by daily total output from these plants.
Appendix Figure A.10 documents that both outcomes exhibit substantial seasonality.
The variability induced by this seasonality obfuscates comparisons of the outcomes
across the sample periods before versus after F'T. For this reason, we include separate
sets of month-of-year fixed effects for high complexity days and low complexity days in
all specifications. That being said, Appendix Figure A.10 also suggests that neither of
the outcome variables are systematically trending up or down over our sample period.
This is comforting given that any such trend over time might confound the comparison

of outcomes across the pre-F'T versus post-F'T sample periods.

Appendix Table A.4 presents the asymptotic p-values from two different tests of
the null hypothesis that the market outcome considered is nonstationary. The two
tests considered are the Augmented Dickey-Fuller unit-root test (Dickey and Fuller
(1979); MacKinnon (1994)) and the Phillips-Perron unit-root test (Phillips and Perron,
1988). We can reject the unit root null hypothesis for both outcomes using either of

the two statistical tests. This provides formal evidence that market outcomes are
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Figure A.10: Monthly Average Outcomes Before vs. After Financial Trading
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Notes: The left panel of this figure plots the monthly averages of the daily total fuel costs
incurred by gas-fired plants divided by the daily total output from these gas-fired plants. The
right panel plots the monthly averages of the daily total fuel use by gas-fired plants divided
by daily total output from these plants. Averages corresponding to months before (after) the
introduction of financial trading are plotted in purple (green).

Table A.4: P-Values for Tests for Nonstationarity

Dickey-Fuller Phillips-Perron
Log Fuel Cost per MWh 0.007 0.063
Log Input Energy per MWh ~0 ~ 0

Notes: This table presents p-values from two tests of the null hypothesis that the daily time series
of the relevant market outcome is nonstationary. The two tests considered are the Augmented
Dickey-Fuller unit-root test (Dickey and Fuller (1979); MacKinnon (1994)) and the Phillips-
Perron unit-root test (Phillips and Perron, 1988). We consider two outcome variables: the log of
fuel costs per MWh of gas-fired output and the log of input energy per MWh of gas-fired output.

not trending up or down during our sample period, allowing us to compare outcomes

across the pre-F'T versus post-FT sample periods without including time trends or

first-differencing the outcome.
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B Trading Fees for California’s Electricity Market

There are three broad types of transaction costs associated with financial trading
(“FT”) in California’s wholesale electricity market: collateral, trading fees and uplift.
Purely financial participants must post collateral greater than the total value of the
virtual bids they submit each day.?? This collateral does not earn any rate of return
while it is held by California’s Independent System Operator (ISO). Moreover, there
can be a lag of more than two weeks between when a market participant requests that
some or all of its collateral be returned and when this money is actually returned.
Consequently, a purely financial participant is foregoing non-trivial financial returns

on any collateral posted with the California ISO in order to engage in virtual bidding.53

Purely financial participants must pay roughly 0.5 cents for each price and quantity
step associated with the virtual bid curve they submit. They must also pay 9 cents per
MWh of virtual energy cleared in fees associated with “market services”. For example,
consider a virtual bidder that submits a demand curve with 10 price/quantity steps
to the day-ahead market. If 50 MWh of her demand bid clears, she must pay $4.55
= ($0.09 x 50) + ($0.005 x 10) in transaction fees. Finally, all financial participants
are required to pay a monthly transaction fee of 1,000 dollars regardless of the volume

of virtual bids they submit or clear.>*

The California ISO clears day-ahead and real-time markets by solving a mixed-
integer programming problem. The California ISO is sometimes forced to manually
dispatch generation units after the close of the day-ahead market or in real-time to
satisfy operational constraints that may not have have been accounted for in the
day-ahead or real-time markets. Any generation units forced by the California ISO

to change production levels outside of the formal market-clearing mechanism receive

52The total value of the virtual bids submitted each day is equal to the sum of the product of the
absolute value of megawatt-hours offered times the applicable reference price for a virtual bid at that
location. See the California ISO document, “Convergence bidding, participating in markets, credit
policy implications,” for a description of the process used to compute nodal reference prices.

53See the California ISO document, “California ISO Credit Management,” for more background.

54 These transaction fees are listed in Session 7 of the Convergence Bidding tutorial published by

California’s ISO (CAISO (2015b)).
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Figure B.1: Annual Uplift Charges for the Five Major ISOs: 2009-2013
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Notes: This figure is taken from FERC (2014). Annual average uplift charges (in dollars per
MWHh) are calculated for each Independent System Operator (ISO) by dividing total annual uplift
charges (in dollars) by total annual electricity demand (in MWh). Total uplift charges and total
electricity demand for CAISO for 2009 are based on the nine months of data after April 1st 2009.
FERC estimated the total uplift charges and electricity demand for ISO-NE for 2012. Uplift
charges for PJM for the years 2012 and 2013 exclude the credits associated with reactive services
(these credits amount to approximately 45 million dollars per year).

“uplift” payments. Generation units that are turned on in the day-ahead market and
fail to recover their start-up, minimum load and as-offered costs from selling energy and
operating reserves also receive a “make-whole payment” to cover this deficit. These
make-whole payments are also included in uplift and ensure that any generation unit
committed to operate in the day-ahead market will at least recover their as-offered

costs.%

Uplift charges are paid by the market participants whose bids contributed to the
out-of-market dispatch of units. Each participant’s contribution is based on a formula
subject to fierce policy debate (Kurlinski, 2013). Purely financial participants are
required to pay uplift charges to the extent that their trades result in generation
unit output levels that deviate from those dictated by the market clearing algorithm.
Appendix Figure B.1 shows the annual average uplift charge per MWh of electricity

demand for the five major Independent System Operators (ISOs) in the United States

®The following link provides more details on uplift charges: http://www.caiso.com/Documents/
BriefinglSO_MarketPricing-MSCPresentation-May19_2014.pdf.
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Figure B.2: Correlation Between Uplift and Day-Ahead Prices
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Notes: This figure, taken from FERC (2014), documents the correlation between the monthly
total uplift credits paid out by CAISO and the monthly average locational marginal price for the
location TH_SP15_GEN-APND from Ventyx. The Pearson correlation coefficient between uplift
and day-ahead prices is r = -0.07.

for 2009-2013. This figure indicates that average uplift charges range from roughly 40
to 60 cents per MWh. However, these annual averages conceal significant volatility in

daily uplift charges (FERC (2014)).

Appendix Figure B.2 plots monthly total uplift payments in California from April
2009 to December 2013. This figure shows an increase in uplift payments after the
introduction of financial trading in February 2011.°6 Kurlinski (2013) argues that
much of this increase in uplift payments is due to financial trading at “interties,”
which are locations where electricity is imported or exported between the California
ISO and other balancing authorities. During our sample period, this led to fierce policy
debate surrounding both whether trading at interies should be allowed and how uplift
payments from trades should be allocated. Consequently, virtual bidding on interties
was suspended on November 28, 2011. We leave it as future work to determine how

this suspension impacted the market efficiency benefits from introducing FT.

56The spike in uplift payments in August 2012 was likely due to an extreme heat wave from August
7th through August 17th (CAISO (2012b)).
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Finally, Appendix Figure B.2 also documents that there is little correlation be-
tween monthly average day-ahead prices and monthly total uplift charges. Average
day-ahead prices are between 30 and 50 dollars per MWh while average uplift charges
are between 0.40 to 0.60 dollars per MWh. It is thus unlikely that the increases in
uplift charges after financial trading was introduced resulted in substantial increases in
the retail electricity prices paid by consumers. Instead, the policy debate has centered

on the allocation of uplift charges across financial versus physical market participants.

C Additional Empirical Results: Price Spreads

This Appendix section discusses three additional results pertaining to day-ahead /real-
time price differences. The first subsection provides empirical evidence that average
day-ahead /real-time price differences are smaller in absolute value after the intro-
duction of FT. These results suggest that day-ahead prices better reflect real-time

conditions after purely financial participation was implemented.

The second subsection presents the methodology and results corresponding to the
hypothesis test that the distribution of the number of hours of day with positive
average price spreads for demand locations first-order stochastically dominates the
corresponding distribution for generation locations. We perform this test separately
for the sample periods before versus after FT is introduced. Our findings suggest that
electricity suppliers are better able to drive real-time prices up at the locations where

they own generation units relative to demand locations.

In the final subsection, we test whether the daily 24 x 1 vector of hourly price
spreads is autocorrelated over days-of-sample. The results of this analysis indicate
that traders are unlikely to earn significantly more profits by conditioning on day-

ahead /real-time price differences from two or more days prior to the current day.
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C.1 Absolute Average Price Spreads Before Versus After FT

This subsection describes our statistical test of whether expected day-ahead/real-time
price spreads decrease in absolute value after the introduction of financial trading
on February 1st 2011. In particular, we formulate a test of the null hypothesis that
1 ,e] > [1thoet] for j = 1,2,...,24, where g, (1i2,,,) is the jth element of the 24 x 1
vector composed of the expected day-ahead/real-time price differences for each hour
of the day for the pre-FT sample period (post-FT sample period). We implement this
statistical test separately for each pricing location. In a slight abuse of notation, we

represent the above null hypothesis as Ho: |ttpre| > |f4post|-
Using the methodology derived in Wolak (1989), we compute the following test
statistic in order to test the null hypothesis that |p,ee| > |ftpost|:

min

T =
S >0

(X" = X" = V(X = X7 - 0)
where X7 (X7'°) is the 24 x 1 vector of the average day-ahead /real-time price differ-
ences for each hour of the day for the pre-FT (post-FT) sample period. We calculate

the covariance matrix V as follows:

. diag[SIGN (X" ) SPrediag[SIGN (X)) +diag[SIGN(YPOSt)]’EP"Stdiag[SIGN(YPOSt)]

Npre Npost

where the diag[Z] operator takes a vector Z and returns a diagonal matrix with the
elements of Z on the diagonal. N?"¢ (N?°5!) is the number of days in the sample
period before (after) the introduction of financial trading. P (3P) is an estimate

—pre

of the asymptotic covariance matrix associated with X (Ypm). We reject the null

hypothesis that |gyre| > |ftpost| if and only if:
24
> w(24,24 = b, V)Pr[x}, > TS < a

h=1

where X%h) is a chi-squared random variable with h degrees of freedom, w(24,24 —
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Table C.1: Service Territory Level P-values for the Absolute Difference Tests

HO: |/J/pre‘ > |Npost| HO: |,U/post‘ > ’Mpre|

PG&E 0.752 0.003
SCE 0.972 0.000
SDG&E 0.832 0.000

Notes: This table reports the p-values associated with the statistical test of the null hypothesis
that |fpre| > |tpost| (Column 1) as well as the statistical test of the null hypothesis that |ppost| >
|ttpre| (Column 2). pipre (fipost) is a 24 x 1 vector composed of the expected day-ahead/real-time
price spreads for each hour of the day for the sample period before (after) the introduction of

financial trading. We perform these statistical tests on the service territory level price spreads
faced by each of California’s three major electric utilities: PG&E, SCE, and SDG&E.

Table C.2: Proportion of Locations for which we fail to reject the Absolute
Difference Test

HO: |,U/pre‘ > |Npost| HO: |,U/post‘ > |Mpre|

Generation Locations 0.999 0.013
Demand Locations 0.987 0.011

Notes: This table reports the proportion of pricing locations for which we fail to reject a size
0.05 test of the null hypothesis that |pre| > |ftpost| (Column 1) and the null hypothesis that
|tpost] > |tpre| (Column 2). pipre (post) 18 @ 24 x 1 vector composed of the expected day-
ahead /real-time price spreads for each hour of the day for a given location for the sample period
before (after) the introduction of financial trading. There are 653 locations associated with
generation units (“Generation Locations”) and 3,961 locations not associated with generation
units (“Demand Locations”) that are present in the sample periods both before and after financial
trading.

h, V) are the weights defined in Wolak (1989), and « is the asymptotic size of the

hypothesis test. We consider tests of size & = 0.05 in the results presented below. The

test statistic and p-value associated with the null hypothesis that |fipest] > |fpre| are

computed in a similar manner.

We first perform these statistical tests on the service territory level price spreads

faced by each of California’s three major electricity distribution utilities: Pacific Gas

and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and

Electric (SDG&E). Appendix Table C.1 presents the p-values associated with these

tests. For all three utilities, we fail to reject the null hypothesis that |fyre| > |fpost|

but reject the null hypothesis that |tpest| > [fiprel-

We also perform our statistical tests separately for each pricing location in Cali-
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fornia. Specifically, Column 1 of Appendix Table C.2 lists the proportion of locations
for which we fail to reject the null hypothesis that |fiye| > |1post|, separately for loca-
tions associated with generation units (“Generation Location”) versus locations not
associated with generation units (“Demand Locations”). We fail to reject this null
hypothesis for over 98% of locations for both generation and demand locations. Col-
umn 2 of Appendix Table C.2 lists the proportion of locations for which we fail to
reject the null hypothesis that |ppest| > |ppre|- We fail to reject this null hypothesis for
only roughly 1% of locations for both generation and demand locations. Combined,
Appendix Table C.2 constitutes strong evidence that absolute average day-ahead /real-

time price spreads fell after purely financial participation was allowed.

C.2 Test for First-Order Stochastic Dominance: Generation
versus Demand Locations Before versus After Financial

Trading

This subsection describes our hypothesis test for whether the distribution across lo-
cations of the number of hours of the day with positive average day-ahead/real-time
price spreads for locations associated with generation units (“Generation Locations”)
first-order stochastically dominates the distribution for locations not associated with
generation units (“Demand Locations”). These hypothesis tests are implemented us-
ing the methodology discussed in Schmid and Trede (1996). First, we calculate the
average day-ahead/real-time price spread X, s for each location n in each hour of
the day h before versus after the introduction of FT. The subscript s = 0 denotes
the pre-F'T sample period while s = 1 denotes the post-FT sample period. We next
calculate the number of hours of the day with positive price spreads for each location

in each sample period:
24

NUMPOS, = > 1[Xp s > 0]

h=1
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Finally, we construct the empirical distribution function (EDF) and empirical prob-
ability mass function (PMF) of NUMPOS,, ; separately for generation locations (in-

dexed “G”) versus demand locations (indexed “D”) before versus after FT. Specifically,

note that: N
R 1 1,8
Fiult) = 5 1[NUMPOS,., < {]
,8 n=1
1 Ni,s
fis() = 5 1[NUMPOS,,, = t]

%,8

n=1

where N, ¢ is the number of locations of type ¢ € {G,D} in sample period s. The
argument t for each of these functions can potentially take on the integer values
between 0 and 24. For example, ﬂs(t) measures the probability that the number
of hours of the day with positive price spreads at location type i in sample period s is

equal to t.

We test the null hypothesis that the EDF for demand locations first-order stochas-
tically dominates the EDF for generation locations. We do so separately for the pre-F'T
sample (s = 0) and the post-FT sample (s = 1). Formally, the null hypothesis for a

given sample period s is:
Hy: Fos(t) > FLs(t) for all t € {0,1,2,...,24} (C.1)

We also test the reverse hypothesis that the EDF for generation locations first-order

stochastic dominates the EDF for demand locations. This null hypothesis is:

Hy: F1,4(t) > Fg(t) for all t € {0,1,2,...,24} (C.2)

Schmid and Trede (1996) demonstrate that the test statistic associated with the

null hypothesis presented in Appendix Equation (C.1) is:

NgsNps ZK:(F (t) = FLs(0)* frs(th)
NG78+NL7S £ G,s\lk L,s L,s\tk
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Table C.3: First-Order Stochastic Dominance Tests: Test Statistics

Before FT  After FT

Hy: FO(t) > F(t) 0.139 0.297
Hy: FU(t) > FO(t) 0.810 1.429

Notes: We reject the null hypothesis at the 5% level (1% level) if the test statistic is greater
than 0.48 (0.68). Schmid and Trede (1996) discusses the derivation of this test statistic.

Additional Notes: This table presents the test statistics associated with null hypotheses per-
taining to the first-order stochastic dominance of the distribution function of the number of hours
of the day that average day-ahead/real-time price spreads are positive. Specifically, the top row
focuses on the null hypothesis that the distribution for locations associated with generation units
(“Generation Locations”) is first-order stochastically dominated by the distribution for locations
not associated with generation units (“Demand Locations”) for all points where the probability
mass function for demand locations is positive. The bottom row focuses on the null hypothesis
that the distribution for demand locations is first-order stochastically dominated by the distri-
bution for generation locations for all points where the probability mass function for generation
locations is positive. The first row presents test statistics calculated for the sample period be-
fore the introduction of financial trading (“FT”) while the second row presents test statistics
calculated for the sample period after FT.

where (y)™ = max(0,y) and we evaluate the EDFs and PMF at all points ¢, €
{t1,ta,...,tx} such that fL,s(tk) > 0. We reject the null hypothesis at the 5% level
(1% level) if the test statistic is greater than 0.48 (0.68). The test statistic for the null
hypothesis presented in Appendix Equation (C.2) is similar in form. Simply reverse

the “G” and “L” subscripts in the computation of the test statistic.

Appendix Table C.3 presents the test statistics associated with testing the null
hypotheses listed in Appendix Equations (C.1) and (C.2). These results indicate that
we fail to reject the null hypothesis that the distribution for demand locations first-
order stochastically dominates the distribution for generation locations for both the
pre-F'T and post-FT sample periods. They also support rejection of the null hypothesis
that the distribution for generation locations first-order stochastically dominates the

distribution for demand locations for both sample periods.

Combined, the results from Appendix Table C.3 suggest that more elements of
the vector of average day-ahead/real-time price differences are positive for demand
locations relative to generation locations. This result is consistent with two features
of California’s wholesale electricity market. First, retailers must submit territory-

level bid curves to the day-ahead market, which greatly limits their ability to exercise
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market power at specific nodes. Second, except for a very small quantity of flexible
loads, only electricity suppliers are able to influence real-time prices by submitting
price-elastic, location-specific offer curves into the real-time market. Our results thus
suggest that suppliers have a greater ability to raise real-time prices relative to day-
ahead prices throughout the day at the locations where they own generation units

relative to demand locations during both the pre-FT and post-F'T sample periods.

C.3 Testing for Autocorrelation in Price Spreads

The methodology for measuring implied trading costs discussed in Section IV considers
trading strategies that vary only by hour of the day. Specifically, we do not allow our
hypothetical trader to update her strategy based on information from past days. We

justify this restriction on trading strategies in this subsection.

Traders submit virtual bids to buy (sell) one MWh of electricity in the day-ahead
market at a given location for a given hour with the obligation to sell (buy) this
electricity back in the real-time market at the same location for the same hour. Traders
simultaneously submit virtual bids for all 24 hours of the following day. Therefore,
trading strategies can potentially be a function of lagged values of the 24 x 1 vector

of realized day-ahead/real-time price spreads for each hour of the day.

However, trading strategies for day d cannot be a function of information from
the values of the 24 x 1 vector of day-ahead/real-time price differences for day d — 1.
This is because the vector of real-time prices for day d — 1 is not known before virtual
bids are submitted to the day-ahead market for day d. Therefore, traders cannot
use correlation between X, and X, ; in their strategies. However, if X; and X,
are correlated for h > 1, then conditioning on X, ; can improve a trader’s forecast
of the mean of X;. Therefore, restricting consideration to trading strategies that
do not condition on past values of price differences is only reasonable if all of the
autocorrelation matrices associated with the time series process governing the daily

vector of price spreads are zero except for the autocorrelation matrix associated with
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the first lag.

We denote the 7" autocovariance matrix associated with the 24 x 1 vector of price
spreads I'(7) = E[(X; — p)(Xi—r — w)']. Consistent with our above discussion, we
expect I'(1) to be non-zero but test whether I'(7) = 0 for all 7 > 1. We thus formulate

a statistical test of the following null hypothesis:
Ho: T'(2) = 0,I'(3) = 0,....,I'(R) = 0

for a fixed value of R. Empirically, we set R = 10.

To implement this hypothesis test, we first define:
£ = [vec(T'(2)),vec(T(3)), ...,vec(T'(R))]

where the wvec(.) operator takes each 24 X 24 autocovariance matrix and stacks it
columnwise to create a 576 x 1 vector. Therefore, £ has 5,184 ( = 576 x 9) elements,
all of which must equal zero under the null hypothesis. We use the moving block
bootstrap discussed in Section III.C to estimate the 5,184 x 5,184 covariance matrix
associated with é . Our Wald statistic T'S = é’ f]g;ooté is asymptotically chi-squared
distributed with 576 x (R — 1) degrees of freedom under the null hypothesis, where we

use a moving block bootstrap procedure in order to estimate the covariance matrix

2g‘,boot-

We first conduct this statistical test separately for the sample periods before and
after the introduction of financial trading (“FT”) using the day-ahead/real-time price
spreads faced by each of California’s three major investor-owned utilities. Appendix
Table C.4 reports the resulting test statistics; the upper a = 0.05 critical value for
these test statistics is x%57184) = 5,352.6. We fail to reject the null hypothesis that
the second through tenth autocovariance matrices are zero for all three utilities both

before and after the introduction of FT.

We also conduct these autocorrelation tests at each pricing location, reporting the
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Table C.4: Test Statistics for Autocorrelation (1 < L < 10) in Daily Price Spreads

Before F'T  After FT

PG&E 4,863.4 3,531.3
SCE 7,541.0 3,635.9
SDG&E  12,003.1 3,334.0

Notes: This table presents chi-squared test statistics corresponding to the null hypothesis that
the second through tenth autocovariance matrices associated with the 24 x 1 vector of day-
ahead/real-time price spreads for each hour of the day are zero. Formally, we are testing the
null hypothesis that I'(2) = I'(3) = ... = T'(10) = 0. We perform this test separately for the
sample periods before versus after the introduction of financial trading using the day-ahead/real-
time price spreads faced by each of California’s three major investor-owned utilities. The upper
a = 0.05 critical value for these test statistics is X%5.184) = 5,352.6.

Table C.5: Proportion of Locations for which we fail to reject the Autocorrelation
Test

Before F'T  After FT

Demand Locations 0.562 0.981
Generation Locations 0.586 0.943

Notes: This table presents the proportion of locations for which we fail to reject a size a = 0.05
test of the null hypothesis that the second through tenth autocovariance matrices of the 24 x 1
vector of day-ahead/real-time price spreads for each hour of the day are zero. Formally, we are
testing the null hypothesis that I'(2) = T'(3) = ... = T'(10) = 0.

results in Appendix Table C.5. Prior to FT, we fail to reject the null hypothesis of
no second through tenth degree autocorrelation at 58.6 percent and 56.2 percent of
generation and demand locations respectively. After F'T, we fail to reject the null
hypothesis of no second through tenth degree autocorrelation at 94.3 percent and 98.1
percent of generation and demand locations respectively. This is consistent with the
logic that financial traders quickly take advantage of any systematic autocorrelation
in price spreads after financial trading is introduced. The results from this subsection
provide evidence that traders cannot earn significantly greater profits by conditioning
on previous realizations of price spreads. This helps to justify our focus in Section IV

on trading strategies that do not condition on past lags of daily price spreads.
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D Data Appendix: Event Study and Difference-in-

Differences

This Appendix section discusses how we construct the daily total fuel cost, fuel use,
output and number of start-ups across all gas-fired units located in the territory served
by California’s ISO. The first subsection focuses on the Continuous Emissions Moni-
toring Systems (CEMS) database used in the analyses in Section VI while the second
subsection discusses how we construct the monthly average natural gas price paid by

each power plant.

D.1 Data Construction

We estimate the event study and difference-in-differences specifications discussed in
Section VI using the Continuous Emissions Monitoring Systems (CEMS) database
administered by the United States Environmental Protection Agency (USEPA, 2009-
2012). These data are publicly available from the USEPA’s website. CEMS provides
us with the hourly output in MWh produced by each fossil-fired unit with capacity
greater than 25MW in each hour-of-sample. CEMS also lists the input heat energy
used by each unit in each hour, including the input energy used to start up or operate
the unit at its minimum safe operating level. For this analysis, we only consider

electricity generation units located in California.

We impose additional sample restrictions using plant-level characteristics from
2009, 2010, and 2012 from the eGRID database provided by the USEPA (USEPA,
1996-2012). We construct two variables from these data: (1) an indicator that is
equal to one if and only if the plant lists natural gas as its primary fuel in 2009, 2010,
or 2012, and (2) an indicator that’s equal to one if and only if the plant lists the
California ISO as its balancing authority in 2009, 2010, or 2012. We merge primary
fuel type and balancing authority from eGrid into the CEMS database using the plant

code (i.e., “orispl code”). Only plants listing natural gas as their primary fuel in at
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least one of the three years are kept for the analysis. We also drop plants that do not

list California ISO as their balancing authority in 2009, 2010 or 2012.

Finally, we construct monthly average prices for natural gas supplied by PG&E
and Southern California Gas (SCG) as discussed below in Appendix Section D.2. A
plant in the CEMS data is assigned the natural gas price time series for PG&E if the
eGrid data lists PG&E as either the utility service territory associated with the plant
or the plant’s operator in 2009, 2010, or 2012. Similarly, the plant is assigned the
natural gas price series for SCG if either the utility service territory associated with
the plant or the plant’s operator is listed as either SCE or SDG&E in 2009, 2010, or
2012. All remaining plants are assigned the overall monthly gas price averaged over

all transactions listing either PG&E or SCG as the supplier.

D.2 Data Construction: Natural Gas Prices

We calculate the monthly average natural gas price paid by power plants in California
using transaction-level data from the Energy Information Administration (EIA, 2009-
2012). Among other variables, the data contain the month-of-transaction, supplier,
fuel price, and quantity sold. The natural gas prices paid by power plants owned
by independent power producers not subject to output price regulation are not made
publicly available. Fortunately, Cicala (2015) demonstrates that the average natural
gas prices paid by price-regulated plants are similar to those paid by market-based

plants.

From these transaction-level data, we construct monthly average natural gas prices
for each of two suppliers: Pacific Gas and Electric (PG&E) and Southern California
Gas (SCG). The resulting monthly average gas prices are plotted in the left panel of
Appendix Figure D.1. We see from this figure that the two time series track each

other fairly well.

Moreover, natural gas prices do not seem to respond to the introduction of finan-
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Figure D.1: Monthly Average Natural Gas Prices By Supplier
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Notes: The left panel of this figure plots the monthly average natural gas prices paid by plants
supplied by Pacific Gas and Electric (PG&E) versus Southern Calfornia Gas (SCG). Monthly
average natural gas prices for each supplier are constructed using transaction-level data for U.S.
power plants from Form EIA-923 administered by the Energy Information Administration (EIA,
2009-2012). The right panel plots the monthly average gas prices paid at the PG&E and SCG
citygates; we collect daily data on the spot gas prices paid at the PG&E and SCG citygates from
S&P Global Platts (S&P Global Platts, 2009-2012). The vertical black dashed line denotes the
introduction of financial trading in February 2011.

cial trading on February 1st 2011. This is not surprising because natural gas is a
homogeneous product used for many purposes other than electricity generation; it is
thus unlikely that shocks to local electricity demand transmit to natural gas prices.
Finally, the gas price series constructed from the EIA data exhibit very similar trends

over time to the monthly average gas prices paid at the PG&E versus SCG citygates.5”

5TWe obtain daily data on the spot gas prices paid at the PG&E and SCG citygates from S&P
Global Platts (S&P Global Platts, 2009-2012).
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E Robustness Checks: Event Study and

Difference-in-Differences

This Appendix section describes robustness checks pertaining to the event study and

difference-in-differences results presented in Section VI.

E.1 Results For Ancillary Services Costs

This subsection explores how ancillary service costs change after the introduction of
FT. The California ISO incurs ancillary service costs in order to ensure that electricity
supply equals electricity demand at every instant even in the face of unanticipated
changes in physical conditions such as generation unit outages or transmission outages
as discussed in Wolak (2019) and Buchsbaum et al. (2020). For example, the market
operator may pay a supplier to keep capacity available from a generation unit that is
currently operating or can turn on quickly in order to balance supply and demand if a
currently operating generation unit fails. We collect data on the costs associated with
ancillary services from the Open Access Same-time Information System (OASIS) API

administered by the California ISO (CAISO, 2009-2012).%®

We first assess how ancillary service costs per MWh of gas-fired output change
after F'T was introduced for high complexity days versus low complexity days. To do

so, we estimate the following regression specification:

K 10
Y, = Oém,HIGH+9w+’Yy,m+Z Z [(Xk,t_7k>s¢s,k+z Ok pl[ Xkt € BINk,bH+Ut (E.1)
s—1 k=1 b—1

where Y; is the logarithm of ancillary services cost per MWh of natural gas-fired
generation for hour ¢. We define HIGH; to be an indicator that is equal to one if

and only if the relevant measure of complexity on day-of-sample ¢ is above the 75th

58During our sample period, the California ISO operated short-term ancillary services markets for
Frequency Regulation Up (RegUp), Frequency Regulation Down (RegDn), Spinning Reserve, and
Non-Spinning Reserve.
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percentile of the distribution of this measure across our sample period. As discussed
in Section VI.B, we estimate separate specifications based on three different measures
of complexity: daily total demand, the daily standard deviation across locations and

hours of real-time prices, and daily total starts.

Appendix Equation (E.1) controls for separate sets of calendar month fixed effects
for high complexity days and low complexity days (a, nicn), an indicator for weekend-
versus-weekday (6,,), month-of-sample fixed effects (7,,,) and the variables in X;:
the log of total electricity demand, the log of net electricity imports, the log of the
monthly average natural gas price, as well as separate controls for the logs of monthly
total production from: (1) renewables, (2) nuclear sources, and (3) hydro sources.
Specifically, we center each control variable in X;; for each centered variable x in X,

2 3

we include x, 22, 23, 2* and ten separate indicators defined using the deciles of the

distribution of z.

Appendix Figure E.1 plots the monthly average residuals from estimating Ap-
pendix Equation (E.1). In the top left and top right panels, we define “high complex-
ity” using daily total demand and the daily standard deviation across locations and
hours in real-time prices respectively. The bottom panel is based on defining complex-
ity using the daily total number of starts by gas-fired units. The vertical black dashed
line denotes the introduction of financial trading on February 1st 2011. The solid red
horizontal lines plot the overall averages of residuals for low complexity days taken
separately over the pre-FT and post-FT sample periods. Similarly, the dashed blue
horizontal lines plot overall averages for high complexity days in the pre-F'T versus

post-F'T sample periods.

The top left and bottom panels of Appendix Figure E.1 suggest that there is not
much difference in residualized ancillary service costs per MWh before versus after the
introduction in FT on either high or low complexity days when complexity is measured
using either daily total demand or daily total starts. In contrast, the top right panel

of Appendix Figure E.1 indicates that ancillary service costs per MWh fell on average
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Figure E.1: Monthly Average Residualized Ancillary Service Costs per MWh
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Notes: This figure plots the monthly averages of the residualized logarithm of ancillary service
costs per MWh of gas-fired output for high complexity days versus low complexity days. We
plot only months with both high and low complexity days. The top left, top right, and bottom
panels of this figure define complexity using daily total demand, the daily standard deviation
across locations and hours of real-time prices, and daily total number of starts by gas-fired units
respectively. For each measure, day t is classified as “high complexity” if the value of the measure
on day t is larger than the 75th percentile of the distribution of this measure across the sample
period. Log ancillary service costs per MWh are residualized using the daily-level regression
shown in Appendix Equation (E.1). The vertical black dashed line denotes the introduction of
financial trading (“FT”). The solid red horizontal lines plot the overall averages of residuals for
low complexity days taken separately over the pre-FT and post-FT sample periods. Similarly,
the dashed blue horizontal lines plot overall averages for high complexity days in the pre-FT and
post-FT sample periods.
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after FT on days with a high standard deviation in real-time prices but not on days
with a low standard deviation in real-time prices. Combined, the evidence suggests
that, at the very least, ancillary service costs per MWh did not increase substantially

after purely financial participation was allowed.?

E.2 Event Study: Additional Tables and Figures

Appendix Figure E.2 presents the monthly average residualized outcome for high com-
plexity days minus the monthly average residualized outcome for low complexity days.
We consider two measures of complexity: daily total demand and the daily standard
deviation across locations and hours in real-time prices. For a given measure, a day
is considered to have “high complexity” if the value of the measure on the day ex-
ceeds the 75th percentile of the distribution of this measure. We only plot average

differences for months-of-sample with both high and low complexity days.

We residualize each outcome Y; in day-of-sample ¢ by estimating the following
equation:
S K 10
Y = e +0utymt Y > [(Xea—X5) bart > Okpl[Xpy € BINgy)l+u, (E2)
k=

s=1 1 b=1

where we include separate sets of calendar month fixed effects for high versus low
complexity days (o, mcn), an indicator for whether the day-of-sample is weekday
versus weekend (6,,), and month-of-sample fixed effects (v, ,,). We also control for the

variables in X; as discussed in Section VI.B.

The two left panels of Appendix Figure E.2 focus on differences in the log of fuel
costs per MWh of gas-fired output while the two right panels focus on differences in

the log of input heat use per MWh of gas-fired output. This figure includes a vertical

®This is borne out by estimating the difference-in-differences regression specified in Equation (6)
considering the log of ancillary service costs per MWh as the dependent variable. Specifically, we
do not find a statistically significant increase in ancillary service costs per MWh for high complexity
days relative to low complexity days after FT is introduced regardless of the measure of complexity
considered, sets of controls included, or whether the outcome is trimmed or not. These results are
available upon request.
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Figure E.2: Monthly Average Differences in Residualized Outcomes
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Notes: This figure plots the monthly average residualized outcome for high complexity days
minus the monthly average residualized outcome for low complexity days. We plot only months
with both high and low complexity days. For the top two panels, day t is classified as “highly
complex” if daily total demand on the day is larger than the 75th percentile of the distribution
of daily total demand. For the bottom two panels, day t is classified as “highly complex” if
the daily standard deviation across locations and hours in the day is above the 75th percentile
of the distribution of this measure. The relevant outcome is residualized using the daily-level
regression shown in Appendix Equation (E.2). We consider the log of fuel costs per MWh of
gas-fired output in the two left panels and the log of input heat per MWh of gas-fired output
in the two right panels. The horizontal solid purple line (dashed green line) presents the overall
average of the difference in residualized outcome across high versus low complexity days for the
sample period before (after) the introduction of financial trading. Finally, the vertical dashed
line denotes the introduction of financial trading.
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dashed line denoting the introduction of financial trading (“FT”). The horizontal solid
purple line (dashed green line) in the figure presents the overall average of the difference
in residualized outcomes across high versus low complexity days for the sample period
before (after) the introduction of FT. Appendix Figure E.2 documents that there are
not substantial differences in the trends of monthly average residualized outcomes
for high versus low complexity days prior to F'T being introduced. Moreover, we see
that residualized outcomes fell on average for high complexity days relative to low

complexity days after the introduction of FT.

One might be concerned that the reduction in average residualized outcomes on
high complexity days is driven by the six months before and after the introduction of
FT. To assuage this concern, we plot the monthly averages of residualized outcomes
for high complexity days and low complexity days excluding the six months before
and after February 1, 2011. The overall averages for high complexity days and low
complexity days, denoted using red and blue horizontal lines respectively, are also
calculated excluding the six months before and after February 1st 2011. We see
that average residualized outcomes fall after F'T on high complexity days but not low

complexity days even after excluding the six month window around February 1st 2011.

One might also be concerned that the base specification in Equation (5) “over-
controls” for the economic factors in X;. To assuage this concern, we consider speci-
fications that control only linearly for the variables in X;. Specifically, for Appendix
Figure E.4, we residualize each outcome Y; in day-of-sample ¢ by estimating the fol-
lowing equation:

Y, = apmicn + Ow + Yym + X0 + 1wy (E.3)

As before, the set of control variables included in X; is the log of total electricity
demand, the log of net electricity imports, the log of the monthly average natural gas
price, as well as the logs of monthly total production from: (1) renewables, (2) nuclear

sources, and (3) hydro sources.

Appendix Figure E.4 documents that the trends in monthly residualized outcomes
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Figure E.3: Monthly Average Residualized Outcomes Before versus After Financial
Trading Dropping the 6 Months Before and After F'T
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Notes: This figure plots the monthly averages of the residualized outcome for high complexity
days versus low complexity days. We plot only months with both high complexity days and low
complexity days. Moreover, we do not plot the six months before and after the introduction
of financial trading (“FT”) on February 1st 2011. Complexity is measured using daily total
demand for the top two panels and the daily standard deviation over locations and hours of
real-time prices for the bottom two figures. For a given measure of complexity, day ¢ is defined
as being “highly complex” if the value of the measure on the day is above the 75th percentile
of the distribution of this measure across the sample period. Outcomes are residualized using
the daily-level regression shown in Equation (5). We consider the log of fuel costs per MWh of
gas-fired output in the two left panels and the log of input heat use per MWh of gas-fired output
in two right panels. The vertical black dashed line denotes the introduction of FT. The solid red
horizontal lines plot the overall averages of residuals for low complexity days taken separately over
the pre-FT and post-FT sample periods. The dashed blue horizontal lines plot overall averages
for high complexity days in the pre-FT versus post-FT sample periods. The six months before
and after February 1, 2011 are not included when calculating the four overall averages denoted
by the blue and red horizontal lines.
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Figure E.4: Monthly Average Residualized Outcomes Before versus After Financial
Trading: No Nonlinear Controls
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Notes: This figure plots the monthly averages of the residualized outcome for high complexity
days versus low complexity days. We plot only months with both high complexity days and
low complexity days. Complexity is measured using daily total demand for the top two panels
and the daily standard deviation over locations and hours of real-time prices for the bottom two
figures. For a given measure of complexity, a day is defined as being “high complexity” if the
value of the measure on the day is above the 75th percentile of the distribution of this measure.
In contrast to Equation (5), residuals are calculated using the daily-level regression specified in
Appendix Equation (E.3) which does not include nonlinear functions of the control variables in
X;. The vertical black dashed line denotes the introduction of financial trading (“FT”). The
solid red horizontal lines plot the overall averages of residuals for low complexity days taken
separately over the pre-FT and post-FT sample periods; the dashed blue horizontal lines plot
overall averages for high complexity days in the pre-FT and post-FT sample periods.
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for both high complexity days and low complexity days remain similar even if we only
control linearly for the variables in X;. Indeed, the trends are quite similar to those
from our primary specification presented in Figure 5. Specifically, we see that the
overall average of each residualized outcome falls after the introduction of F'T on high
complexity days but not low complexity days, which is consistent with the mechanism

described in Section II.

E.3 Statistical Test of Common Trends Using First-

Differences

The definition of “common pre-existing trends” is that the slope over time in outcomes
is the same for high versus low complexity days. The “slope over time” is simply the
first difference in outcomes: AY; = Y; —Y;_ ;. Thus, to formally test the “common
pre-existing trends” assumption, we estimate the following regression model using only

data from before the introduction of FT:
AY, = (AM,)é + BHIGH, + ¢, (E.4)

For Columns 1 and 3 of Appendix Table E.1, HIGH, is an indicator variable that is
equal to one if and only if daily total demand on day-of-sample t is larger than the
75th percentile of the distribution of daily total demand across our sample period.
For Columns 2 and 4 of this table, HIGH, is equal to one if the standard deviation in
real-time prices across locations and hours on day ¢ is larger than the 75th percentile of
the distribution of daily standard deviations. For ease of exposition, we refer to days
with HIGH; = 1 as high complexity days, recognizing that this indicator is defined
based on demand in some specifications and the standard deviation in real-time prices

in other specifications.

All specifications control for the first differences of the variables in ﬁt The vari-

ables included in 1\71 are indicators corresponding to separate sets of fixed effects for
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Table E.1: Checking For Common Pre-Existing Trends Using First-Differences

Dep. Var. First Diff. of First Diff. of
Log Fuel Cost per MWh Log Input Energy per MWh

(1) (2) (3) (1)

POSTFET, 0.006 0.005 0.005 0.005

(0.007) (0.005) (0.007) (0.005)

R? 0.972 0.972 0.653 0.660

Mean of Dep. Var. 0.095 0.095 -0.003 -0.003
Measure: Total Demand Y N Y N
Measure: SD RT Price N Y N Y
Number of Obs. 670 670 670 670

Notes: This table presents evidence that pre-existing differential trends in outcomes across high
versus low complexity days are not driving the difference-in-differences results presented in Table
4. The unit of observation for these regressions is day-of-sample; the regressions are estimated
using only days before the introduction of financial trading. For Columns 1 and 3 of this table,
the indicator variable HIGH; is equal to one if and only if daily total demand on day t is greater
than the 75th percentile of the distribution of daily total demand across the sample period. For
Columns 2 and 4, HIGH; is equal to one if the daily standard deviation across locations and hours
of real-time prices on day t is greater than the 75th percentile of the distribution of daily standard
deviations. The dependent variable considered in the first two columns of this table is the first
difference of the log of fuel costs per MWh; the dependent variable considered in Columns 3 and 4
of this table is the first difference of the log of input energy use per MWh. The row titled “Mean
of Dep. Var.” reports the mean of the relevant dependent variable. All of the regressions listed
in this table control for the first differences of the fixed effects and control variables described
for Equation (6) in Section VI.C; see Appendix Equation (E.4) for more details. Standard errors

are clustered by week-of-sample and are reported in parentheses.

high versus low complexity days, month-of-sample fixed effects, and weekend versus
weekday fixed effects as well as the linear and nonlinear functions of X; specified in

Equation (6). Standard errors are clustered by week-of-sample.

Appendix Table E.1 presents the results from estimating Appendix Equation (E.4).
These results indicate that, for both outcome variables and both indicators of com-
plexity, we cannot reject the null hypothesis that the first difference of the outcome is
the same in high versus low complexity days prior to February 1st 2011. This provides
statistical evidence that the findings from our difference-in-differences framework are
not driven by pre-existing differences in the time trend of our outcomes in high versus

low complexity days.
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E.4 Robustness to Percentage Cut-Off for Complexity

In this subsection, we estimate the difference-in-differences regression specified in
Equation (6) defining days with a “high” complexity based on different cut-offs. Specif-
ically, in Appendix Table E.2, we define day ¢ as having “high complexity” if daily
total demand on day ¢ is higher than the Xth percentile of the distribution of daily
total demand; X is equal to 50, 60, 70, 80, and 90 for Columns 1, 2, 3, 4, and 5 of Ap-
pendix Table E.2 respectively. In Appendix Table E.3, we define complexity using the
standard deviation across locations and hours of real-time prices. As with Appendix
Table E.2, Columns 1, 2, 3, 4, and 5 consider the 50th, 60th, 70th, 80th, and 90th

percentiles of the distribution of daily standard deviations respectively.

The top panel of Appendix Table E.2 shows that the estimated reduction in average
fuel costs per MWh after financial trading on relatively high demand days remains
statistically significant whether “high demand” is defined as days-of-sample above the
50th, 60th, 70th, 80th, or 90th percentiles of daily total demand. The corresponding
reductions in input energy use per MWh also remain statistically significant regardless
of the cut-off used to define high demand days. This demonstrates that our results
are not an artifact of choosing the 75th percentile of the distribution of daily total
demand as the cut-off in our primary specifications. Moreover, the results remain
similar when defining high complexity days using different percentiles of the daily
standard deviation across locations and hours in real-time price rather than daily

total demand (see Appendix Table E.3).

Focusing on the top panel of Appendix Table E.2, the estimated effects using
the 50th, 60th, or 70th percentiles imply similar fuel cost savings. Specifically, these
estimates suggest that fuel costs fell by roughly 24-38 million dollars on high demand
days after financial trading was introduced. The first three columns of the bottom
panel indicate that the corresponding reductions in input energy resulted in a decrease
in CO5 emissions of roughly 258-428 thousand tons on high demand days. However,

the estimates of the aggregate fuel cost savings and carbon emissions reductions are
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Table E.2: Diff-in-Diff Robustness Check: By Percentage of Demand

Dependent Variable: Log of Average Fuel Cost Per MWh
(1) (2) (3) (4) ()

HIGH, x POSTFT, 0.019 -0.032 -0.026 -0.022 -0.028
(0.005)  (0.006) (0.005) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
Fuel Cost Savings (Million USD)  27.525  37.757  24.650 15.353  11.049
R? 0.964 0.965 0.964 0.960 0.960
Mean of Dep. Var. 3.680 3.680 3.680 3.680 3.680
Number of Obs. 1,340 1,340 1,340 1,340 1,340

Dependent Variable: Log of Average Input Heat Use Per MWh
(1) (2) (3) (4) ()

HIGH, x POSTFT, 0.017 -0.030 -0.022 -0.020 -0.025
(0.005)  (0.006) (0.005) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
CO4 Reductions (Tons) 295,929 427,562 258,475 168,086 120,846
R? 0.735 0.741 0.735 0.714 0.712
Mean of Dep. Var. 2.051 2.051 2.051 2.051 2.051
Number of Obs. 1,340 1,340 1,340 1,340 1,340

Notes: This table presents the difference-in-differences estimates of the change in fuel costs
per MWh and input heat energy per MWh after financial trading (“FT”) is introduced on high
demand days relative to low demand days. The unit of observation for these regressions is day-
of-sample. The “Post FT” indicator is equal to one if and only if the day-of-sample is on or after
February 1st 2011. The indicator variable HIGH; is equal to one if and only if daily total demand
in day t is greater than the Xth percentile of the distribution of daily total demand across our
sample period; X is equal to the 50th, 60th, 70th, 80th, or 90th percentile depending on whether
we’re considering the specification estimated in Columns 1, 2, 3, 4, or 5 respectively. All of the
regressions listed in this table include the sets of fixed effects and control variables specified in
Equation (6) in Section VI.C. Standard errors are clustered by week-of-sample and are reported
in parentheses.
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Table E.3: Diff-in-Diff Robustness Check: By Percentage of SD[Real-Time Prices]

Dependent Variable: Log of Average Fuel Cost Per MWh
(1) (2) (3) (4) ()

HIGH, x POSTFT, -0.006 -0.006 -0.011 -0.014 -0.013
(0.003) (0.004) (0.004) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
Fuel Cost Savings (Million USD)  8.008  6.203 ~ 8.810  7.289  3.395
R? 0.960  0.960  0.960  0.960  0.960
Mean of Dep. Var. 3.680  3.680  3.680  3.680  3.680
Number of Obs. 1,340 1,340 1,340 1,340 1,340

Dependent Variable: Log of Average Input Heat Use Per MWh
(1) (2) (3) (4) ()

HIGH, x POSTFT, -0.006 -0.005 -0.010 -0.014 -0.014
(0.003) (0.004) (0.004) (0.005) (0.006)

Cut-Off Percentage 50 60 70 80 90
CO4 Reductions (Tons) 89,056 64,765 95,512 84,647 45,576
R? 0.715 0.714  0.715  0.715  0.712
Mean of Dep. Var. 2.051 2.051 2.051 2.051 2.051
Number of Obs. 1,340 1,340 1,340 1,340 1,340

Notes: This table presents the difference-in-differences estimates of the change in fuel costs per
MWh and input heat energy per MWh after financial trading (“FT”) is introduced on days with
a relatively high daily standard deviation in real-time prices. The unit of observation for these
regressions is day-of-sample. The “Post FT” indicator is equal to one if and only if the day-of-
sample is on or after February 1st 2011. The indicator variable HIGH; is equal to one if and only
if the standard deviation across locations and hours in real-time prices for day ¢ is greater than
the Xth percentile of the distribution of daily standard deviations across our sample period; X is
equal to the 50th, 60th, 70th, 80th, or 90th percentile depending on whether we’re considering
the specification estimated in Columns 1, 2, 3, 4, or 5 respectively. All of the regressions listed
in this table include the sets of fixed effects and control variables specified in Equation (6) in
Section VI.C. Standard errors are clustered by week-of-sample and are reported in parentheses.
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far smaller if we instead consider the 80th or 90th percentiles of the distribution of
daily total demand. This is because we are applying a similarly sized effect to far
fewer days when considering the 80th or 90th percentiles of daily total demand as the
cut-off. For this reason, we consider the 75th percentile of daily total demand as the

cut-off for our primary specifications.

E.5 Excluding Months After the San Onofre Nuclear Plant

Shutdown

Davis and Hausman (2016) studies the shut down of the San Onofre nuclear power
plant in February 2012. One may be concerned that this shut down impacts our
estimates of the reductions in fuel cost per MWh after financial trading on high com-
plexity days relative to low complexity days. To assuage this concern, we note that
our primary specifications control for a host of economic factors, including monthly
total output from nuclear plants in California, as follows. First, we center each control

3 4

variable; for each centered control variable z, our specification includes z, 22, 23, x

and ten separate indicators defined using the deciles of the distribution of z.

To further assuage this concern, we estimate the difference-in-differences regres-
sion specified in Equation (6) excluding the months after the San Onofre plant shut
down. Namely, we estimate Equation (6) considering only the sample period 4/1/2009-
1/31/2012

Appendix Table E.4 presents the results from this estimation. Columns 1, 2, and
3 define high complexity days based on the 75th percentile of the distribution of daily
total demand, daily standard deviation in real-time prices, and daily total starts by
gas-fired units respectively. The top panel considers the log of fuel costs per MWh
while the bottom panel focuses on the log of input fuel use per MWh. Regardless of the
measure of complexity considered, the reductions in fuel cost per MWh and input fuel

use per MWh on high complexity days after FT remain precisely estimated and similar
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Table E.4: Diff-in-Diff Specification Excluding Days After January 31, 2012

Dep. Var.: Log Fuel Cost per MWh
(1) (2) (3)

HIGH, x POSTFT,  -0.028 -0.018 -0.018
(0.007) (0.006)  (0.005)

R? 0.958 0.955 0.957

Mean of Dep. Var. 3.717  3.717  3.717

Number of Obs. 1,036 1,036 1,036
Measure: Total Demand Y N N
Measure: SD RT Price N Y N
Measure: Total Starts N N Y

Dep. Var.: Log Input Energy Use per MWh
(1) (2) (3)

HIGH, x POSTFT,  -0.025 -0.018 -0.018
(0.007) (0.006)  (0.005)

R? 0.746 0.735 0.746

Mean of Dep. Var. 2.051 2.051 2.051

Number of Obs. 1,036 1,036 1,036
Measure: Total Demand Y N N
Measure: SD RT Price N Y N
Measure: Total Starts N N Y

Notes: This table presents the difference-in-differences estimates of the change in outcome after
the introduction of financial trading (“FT”) on high complexity days relative to low complexity
days. The unit of observation for these regressions is day-of-sample. The dependent variable
considered in the top (bottom) panel of this table is the log of fuel costs per MWh (the log of
input energy per MWh). Columns 1, 2, and 3 of each panel of the table measure complexity
using daily total demand, daily standard deviation in real-time prices, and daily total starts
respectively. For a given measure of complexity, the indicator variable HIGH; is equal to one if
and only if the value of the measure on day ¢ is higher than the 75th percentile of the distribution
of this measure across the 4/1/2009-1/31/2012 sample period used for this table. The “Post FT”
indicator is equal to one if and only if the day-of-sample is on or after February 1st 2011. All of
the regressions listed in this table include the sets of fixed effects and control variables specified in
Equation (6) in Section VI.C. Standard errors are clustered by week-of-sample and are reported
in parentheses.
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in magnitude when estimated on the 4/1/2009-1/31/2012 sample period rather than
the full 4/1/2009-11/30/2012 sample period. This suggests that our primary estimates

do not stem from the shut down of the San Onofre nuclear plant.
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F Potential Mechanism Underlying Efficiency

Gains from Financial Trading

This section is split into four parts. In the first subsection, we present descriptive evi-
dence that increases in our three measures of complexity are associated with increases
in systemwide fuel costs per MWh. Our three measures of complexity are daily total
demand, the daily standard deviation across pricing locations and hours of real-time
prices, and daily total number of unit start-ups. The second subsection presents sug-
gestive evidence that the aggregate marginal cost curve becomes steeper as the residual
demand to be served by the gas-fired fleet increases. The third subsection discusses
results from difference-in-differences specifications defining “high complexity” days
using daily total number of starts. The final subsection explores differences in the
start-up behavior of units with larger versus smaller fuel costs per MWh before versus
after financial trading on high versus low complexity days (i.e., a “triple-differences

approach”).

F.1 Measures of Complexity and Fuel Costs

Appendix Figure F.1 plots the relationship between our three measures of system
complexity and residualized log fuel costs per MWh. We residualize the log of fuel

costs per MWh of gas-fired output using the following equation:

10

S K
Y, = 0p + vym + Z Z[(Zk,t — Zy)bs s + Z Ok p1[Zks € BINg || + (F.1)

s=1 k=1 b=1

for day-of-sample ¢ in calendar month m and year-of-sample y. This specification
includes month-of-sample fixed effects (o, ) and an indicator for whether the day-of-
sample is a weekday versus weekend (6,,). We also control for the variables in Z;: the
log of daily net electricity imports, the log of the monthly average natural gas price

paid by power plants in CAISO, as well as logs of monthly total production from: (1)
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Figure F.1: Residualized Fuel Cost Per MWh and Measures of Complexity
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Notes: This figure documents the relationship between residualized daily total fuel costs per
MWh and each of our three measures of complexity. We residualize log fuel costs per MWh using
the regression specified in Appendix Equation (F.1). The x-axis plots the relevant measure of
complexity: (1) the log of the daily standard deviation in real-time prices across locations and
hours of the day in the top left panel, (2) the log of daily total demand in the top right panel
and (3) the log of daily total number of starts by gas-fired units in the bottom middle panel.

renewables, (2) nuclear sources, and (3) hydro sources. Specifically, we center each
variable in Z;; for each centered control variable z, our specification includes z, 22,
23, 2% and ten separate indicators defined using the deciles of the distribution of z. In

contrast to Equations (5) and (6), we do not control for the log of daily total demand

because daily total demand is one of our three measures of complexity.

All three panels of Appendix Figure F.1 document substantial variation in resid-
ualized log fuel costs per MWh that is not explained by the relevant measure of

complexity. Nevertheless, the best linear fit between residualized log fuel costs per
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MWh and each measure of complexity has a positive slope. The estimated slopes are
0.005, 0.033, and 0.009 for the log of the daily standard deviation in real-time prices,
the log of daily total demand, and the log of daily total number of starts respectively.
The correlation between residualized log fuel cost per MWh and the relevant mea-
sure of complexity is 0.150, 0.120, and 0.162 for the log of daily standard deviation
in real-time prices, log demand, and log number of starts respectively. Combined,
this evidence indicates that increases in each of our three measures of complexity are

associated with increases in fuel costs per MWh.

F.2 Marginal Fuel Cost Curves

In this subsection, we present crude estimates of the aggregate marginal fuel cost
curve in California’s wholesale electricity market. The goal of this subsection is only
to provide suggestive evidence that the marginal fuel cost of the marginal unit in-
creases at an increasing rate as the residual demand to be served by the gas-fired fleet
increases. We fully acknowledge that we ignore several important factors that enter
marginal costs, such as variable operating and maintenance costs and the allowance

costs associated with nitrogen oxide emissions.

We calculate each unit’s marginal fuel cost quite simply: each unit’s marginal
fuel cost is its aggregate fuel costs over the sample period divided by its output over
the sample period. Appendix Figure F.2 plots the resulting marginal cost curve as a
function of the cumulative output of the gas-fired fleet. The x-axis for the two left
panels is hourly cumulative output while the x-axis for the two right panels is daily
cumulative output. For the top two panels of Appendix Figure F.2, we assume each
unit is producing at capacity, as measured by its maximum hourly output over the
sample period. For the bottom left (right) panel, we choose an example hour (day)
where the total output produced by the gas-fired fleet is especially high; we then

simply use the unit’s observed output in the hour (day).®° Finally, we plot the 50th,

60The example day chosen is August 13, 2012. We use the 1pm-2pm interval on this day for the
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75th, 90th, and 95th percentiles of the distribution of hourly (daily) total gas-fired

output as vertical dashed lines in the two left (right) panels of Appendix Figure F.2.

It is clear from Appendix Figure F.2 that the marginal cost curve becomes sig-
nificantly steeper as the residual demand to be served by the gas-fired fleet increases.
The marginal cost curve is especially steep at the very highest levels of residual de-
mand. That being said, even the 95th percentile of residual demand falls well short
of the steepest portion of the marginal cost curve. Combined, these figures provide
suggestive evidence that there are larger potential gains from reallocation of output

across units at higher levels of residual demand to be served by the gas-fired fleet.

F.3 Specifications Based on Number of Starts

This subsection compares market outcomes before versus after the introduction of
financial trading on days with more versus less starts by gas-fired units. We estimate
the following specification in order to quantify how our two outcome variables change

after financial trading on days with a relatively high number of starts:

Y = ammcn + 0w + Vym + Ipp(HIGH; x POSTFET,)+
10 (F.2)

s=1 k=1 b=1

where we define HIGH; to be an indicator that is equal to one if and only if daily total
number of starts on day-of-sample ¢ is above the k™ percentile of the distribution of
daily total starts across our 4/1/2009-11/30/2012 sample period; we consider specifi-
cations based on the 50th, 60th, 70th, 80th and 90th percentiles of the distribution of
starts. All regressions include separate sets of calendar month fixed effects for days
with a high versus low number of starts (o, micn), weekend versus weekday fixed ef-
fects (0,), and month-of-sample fixed effects (7,,). In addition, we control for the

variables in Z in the same way as discussed in Section VI.C. Finally, standard errors

hourly figure.
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Figure F.2: Hourly and Daily Marginal Cost Curves
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Notes: This figure presents aggregate marginal cost curves constructed by stacking units based
on their aggregate fuel costs per MWh. We calculate each unit’s marginal cost as the unit’s
fuel cost over the sample period divided by the unit’s total output over the sample period. The
x-axis of each figure is the cumulative output of gas-fired units with marginal cost less than
the value listed: the left panels plot hourly cumulative output while the right panels plot daily
cumulative outputs. We assume that each unit produces at its capacity for the top two panels;
each unit’s capacity is defined to be its maximum hourly output across the sample period. The
bottom right panel uses each unit’s observed output from August 13 2012; the bottom left panel
uses each unit’s output from the 1pm-2pm interval on August 13 2012. Finally, the left (right)
panels also include four vertical dashed lines with the 50th, 75th, 90th, and 95th percentiles of
the distribution of hourly (daily) total observed output from gas-fired units.

56



Table F.1: Diff-in-Diff Robustness Check: By Percentage of Daily Starts

Log of Fuel Cost Per MWh
(1) (2) (3) (4) (5)

HIGH, x POSTFT, -0.012  -0.012 -0.010 -0.007 -0.009
(0.004) (0.004) (0.004) (0.004) (0.005)

Cut-Off Percentage 50 60 70 80 90
Fuel Cost Savings (Million USD)  16.185  13.701  8.836  4.871  3.164
R? 0.962 0.962 0.961  0.961  0.961
Mean of Dep. Var. 3.680 3.680 3.680  3.680  3.680
Number of Obs. 1,340 1,340 1,340 1,340 1,340

Log of Input Heat Per MWh
(1) (2) (3) (4) (5)

HIGH, x POSTFT; -0.010  -0.011  -0.009 -0.007  -0.009
(0.004)  (0.004) (0.004) (0.004) (0.005)

Cut-Off Percentage 50 60 70 80 90
CO4 Reductions (Tons) 168,160 153,552 97,466 51,248 38,281
R? 0.726 0.727 0.723 0.721 0.718
Mean of Dep. Var. 2.051 2.051 2.051 2.051 2.051
Number of Obs. 1,340 1,340 1,340 1,340 1,340

Notes: This table presents the difference-in-differences estimates of the change in fuel costs per
MWh and input heat energy per MWh after the introduction of financial trading (“FT”) on days
with a high versus low number of times that gas-fired units started up. The unit of observation
for these regressions is day-of-sample. The “Post FT” indicator is equal to one if and only if the
day-of-sample is on or after February 1st 2011. The indicator variable HIGH; is equal to one if
the daily total number of starts in day ¢ is greater than the Xth percentile of the distribution of
daily total starts across our sample period, where X is equal to the 50th, 60th, 70th, 80th, or 90th
percentile depending on whether we’re considering the specification estimated in Columns 1, 2,
3, 4, or 5 respectively. All of the regressions listed in this table include the sets of fixed effects
and control variables specified in Equation (6) in Section VI.C. Standard errors are clustered by
week-of-sample and are reported in parentheses.

are clustered by week-of-sample.

Appendix Table F.1 demonstrates that our estimates are negative and precisely

estimated regardless of whether we consider days-of-sample with total number of starts

above the 50th, 60th, 70th, 80th, or 90th percentiles of the distribution of daily total

starts. The estimated reductions in fuel costs per MWh after financial trading on

days with a relatively large number of starts are roughly 1% across specifications.

These estimates are similar in magnitude to the corresponding estimates for high

demand days and high standard deviation days from Appendix Tables E.2 and E.3
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respectively. This suggests that one mechanism by which purely financial participation
lowers production costs is changes in the type of units that start up on days requiring

a larger number of unit start-ups. We explore this hypothesis in the next subsection.

F.4 Starts on High Complexity Days Before versus after Fi-

nancial Trading
This subsection presents estimates of the differences in the number of starts by gas-
fired units before versus after the introduction of financial trading on high complexity

days versus low complexity days. We first employ the same difference-in-differences

specification as in Section VI.C:

Yt = am7HIGH + Qw + 'Yy,m + 5DD(HIGH75 X POSTFTt)

S K B 10 (F.3)
Y [(Xaw = Xa) bk + Y Ok p1[Xay € BINgy]] +
s=1 k=1 b=1

where ¢ indexes day-of-sample in calendar month m in year y. The outcome variable
Y; is the log of the total number of starts by gas-fired units on day t divided by the
total output from gas-fired units on day t. The indicator variable POSTFT, is equal

to one if day-of-sample t is on or after the introduction of FT.

As before, we consider two different indicators of the complexity of the optimiza-
tion problems to be solved to clear real-time markets: total daily demand and the daily
standard deviation of real-time prices. For the first three columns of Appendix Table
F.2, the indicator variable HIGH; is equal to one if and only if daily total demand
on day t is higher than the 75th percentile of the distribution of daily total demand
across our sample period. For the last three columns of this table, HIGH, is equal to
one if the standard deviation across locations and hours of real-time prices on day ¢ is

larger than the 75th percentile of the distribution of these daily standard deviations.

The independent variable of interest is HIGH; x POSTFT,, which captures the

difference in starts per MWh on high complexity days relative to low complexity days
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Table F.2: Change in Starts After F'T on Relatively High Complexity Days

Log Total Number of Starts per MWh
(1) (2) (3) (4) (5) (6)

HIGH, x POSTFT,  -0.117 -0.115 -0.132 -0.078 -0.088 -0.079
(0.068) (0.067) (0.067) (0.046) (0.044) (0.045)

R? 0.610 0.598 0.598 0.656 0.647 0.643

Mean of Dep. Var. -8.456  -8.456  -8.456  -8.456  -8.456  -8.456
Trimmed Dep. Var.? N Y N N Y N
No Nonlinear Controls N N Y N N Y
Measure: Total Demand Y Y Y N N N
Measure: SD RT Price N N N Y Y Y

Number of Obs. 1,340 1,314 1,340 1,340 1,314 1,340

Notes: This table presents the difference-in-differences estimates of the change in outcome after
the introduction of financial trading (“FT”) on relatively high complexity days. The unit of
observation for these regressions is day-of-sample. For the first three columns of each panel, the
indicator variable HIGH; is equal to one if and only if daily total demand on day ¢ is higher
than the 75th percentile of the distribution of daily total demand across the sample period. For
the last three columns, HIGH; is equal to one if the daily standard deviation over locations and
hours of real-time prices in day t is greater than the 75th percentile of the distribution of daily
standard deviations. The dependent variable considered is the log of the total number of starts
by gas-fired units divided by daily total output by gas-fired units. The “Post FT” indicator is
equal to one if and only if the day-of-sample is on or after February 1st 2011. The regressions
underlying the estimates presented in Columns 1, 2, 4 and 5 include the sets of fixed effects and
control variables described in Appendix Equation (F.3). The set of controls X; is included only
linearly for the regressions underlying Columns 3 and 6. In Columns 2 and 5, we trim the top
and bottom 1% of the outcome before estimating the regression. Standard errors are clustered
by week-of-sample and are reported in parentheses.

after relative to before FT. As before, our primary specifications control for X;: the log
of total electricity demand, the log of net electricity imports, the log of monthly average
natural gas prices, as well as separate controls for the log of monthly total production
from: (1) renewables, (2) nuclear sources, and (3) hydro sources. Specifically, we center
each variable in X;; for each centered variable x in X, the specification includes =,

3

22, 23, 2% and ten separate indicators defined using the deciles of the distribution of

x. Finally, standard errors are clustered by week-of-sample.

The results are presented in Appendix Table F.2. The estimated reductions in
starts per MWh are precisely estimated regardless of which of the two indicators of
complexity are used. Moreover, Columns 2 and 5 demonstrate that the results remain
similar if we trim the top 1% and bottom 1% of the distribution of the dependent

variable prior to estimating the regressions. Finally, in Columns 3 and 6, we show that
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the estimates remain similar if we control for the set of variables in X; only linearly
rather than include the nonlinear terms specified in Appendix Equation (F.3). All
told, the estimates in Appendix Table F.2 indicate that the number of gas-fired units
that start up to produce a given level of gas-fired output falls after the introduction

of financial trading on relatively high complexity days.

To explore which types of units are less likely to start up after FT, we categorize
a unit as “baseload” if the unit’s aggregate fuel costs per MWh are in the bottom
half of the distribution across units of this magnitude; units in the top half of the
distribution of aggregate fuel costs per MWh are categorized as “peakers”. With this

categorization in hand, we estimate the following regression:

Yri,t = O m HIGH + Yi,m,y + Qw + (SDDD(PEAKERl X HIGHt X POSTFTt)

K o 10 (F.4)
[(Xkt — Xi) s i + Z Ok p1[ Xkt € BINgp]] + iz
1 k=1 b—1

_|_

s
where 7 indexes type of unit (either baseload or peaker) and t indexes day-of-sample
in calendar month m in year y. For the first two columns of Appendix Table F.3,
the outcome variable Y;; is the log of total starts. We drop observations with zero
total starts from this regression. As a robustness check, we also consider the inverse
hyperbolic sine of total starts as the dependent variable (see Columns 3 and 4). Finally,

we estimate the model using a Poisson regression in Columns 5 and 6 of Appendix

Table F.3. Both these models allow us to include observations with zero total starts.

As before, the indicator variable POSTFT, is equal to one if and only if day-of-
sample t is on or after the introduction of FT. For Columns 1, 3, and 5 of Appendix
Table F.3, the indicator variable HIGH, is equal to one if and only if daily total
demand on day ¢ is larger than the 75th percentile of the distribution of daily total
demand across our sample period. For Columns 2, 4, and 6, HIGH; is equal to one
if the standard deviation across locations and hours of real-time prices on day t is

greater than the 75th percentile of the distribution of daily standard deviations.

60



All specifications include separate sets of type of unit by calendar month fixed
effects for days with HIGH; = 1 versus HIGH; = 1 (i.e.: ajmmcn), type by month-
of-sample fixed effects (i.e.: 7, ,), and an indicator for weekday versus weekend (i.e.:
0.,). We control for the same variables X, in the same way as discussed above for

Appendix Equation (F.2). Finally, standard errors are clustered by week-of-sample.

The independent variable of interest is PEAKER,; x HIGH; x POSTFT,, which
captures the difference in starts for peakers relative to baseload units on high com-
plexity days relative to low complexity days after relative to before the introduction
of financial trading. Of course, we also include each of the three “main effects” as well
as the three two-way interactions defined by these three variables. Note that some of
the main effects and interactions are absorbed by the fixed effects considered in the

specification.

The estimated reductions in starts for peaker units relative to baseload units after
financial trading on relatively complex days remains precisely estimated regardless of:
(1) whether complexity is measured using daily total demand or the daily standard
deviation in real-time prices (Columns 1, 3, and 5 versus Columns 2, 4, and 6), (2)
whether we take the log or the inverse hyperbolic sine before estimating the linear
regression (Columns 1 and 2 versus Columns 3 and 4), and (3) whether we estimate
the model using linear regression or Poisson regression (Columns 1-4 versus Columns

5 and 6).

In the previous subsection, we documented that fuel costs per MWh fell after
financial trading was introduced on days with a relatively high number of starts. We
hypothesized that this reduction in fuel costs came from a switch in the type of units
that were started up to meet demand during times when solving the optimization
problems required to clear the real-time market were complex. Appendix Table F.3
provides evidence consistent with this hypothesis. Namely, focusing on Column 1, our
estimates indicate that peakers start up roughly 35% less times than baseload units

on relatively high demand days after financial trading was introduced. This concords
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Table F.3: Changes in Starts By Plant Type After Financial Trading on Relatively
High Complexity Days

(1) (2) (3) (4) () (6)

PEAKER; x HIGH, x POSTFT, 0.359  -0.269 -0.463 -0.262 -0.294  -0.180
(0.136)  (0.075) (0.149) (0.081) (0.113) (0.056)

Measure of Complexity: Total Demand Y N Y N Y N
Measure of Complexity: SD RT Price N Y N Y N Y
Dep. Var. in Logs Y Y N N N N
Dep. Var. in Asinh N N Y Y N N
Poisson Spec. N N N N Y Y
Peaker/Month/High Day FE Y Y Y Y Y Y
Peaker/Month-of-Sample FE Y Y Y Y Y Y
Weekday versus Weekend FE Y Y Y Y Y Y
R? 0.531 0.579 0.532 0.576
Mean of Dep. Var. 2.767 2.767 3.450 3.450 19.313  19.313
Number of Obs. 2,669 2,669 2,680 2,680 2,680 2,680

Notes: This table presents the estimated difference in start-ups by baseload versus peaker gas-
fired units before versus after the introduction of financial trading (“FT”) on high versus low
complexity days. We categorize a unit as “baseload” if the unit’s aggregate fuel costs per MWh
are in the bottom half of the distribution across units of this magnitude; units in the top half
of the distribution of aggregate fuel costs per MWh are categorized as “peakers”. The unit of
observation considered for these regressions is type-of-unit/day-of-sample. For Columns 1, 3,
and 5, the indicator variable HIGH; is equal to one for days-of-sample with daily total demand
greater than the 75th percentile of the distribution of daily total demand across the sample
period. For Columns 2, 4, and 6, HIGH; is equal to one if the standard deviation across locations
and hours in real-time prices on day ¢ is higher than the 75th percentile of the distribution of
daily standard deviations in real-time prices. The “Post FT” indicator is equal to one if and
only if the day-of-sample is after FT is introduced on February 1st 2011. The row titled “Mean
of Dep. Var.” reports the mean of the relevant dependent variable: the log of total number of
starts by gas-fired units of the type in the day for Columns 1 and 2, the inverse hyperbolic sine
of starts for Columns 3 and 4, and number of starts in levels for Columns 5 and 6. We estimate
the model using linear regression for Columns 1-4 but Poisson regression for Columns 5 and 6.
All of the regressions listed in this table include the sets of fixed effects and control variables
specified in Appendix Equation (F.4). Standard errors are clustered by week-of-sample and are
reported in parentheses.
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with the intuition that the locational bids and offers submitted by purely financial
participants in the day-ahead market resulted in the use of lower cost baseload units

rather than higher cost peaker units to satisfy demand during high complexity days.
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