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Abstract

This paper estimates a model of the household-level demand for electricity services
such as lighting, heating and cooling, home appliances, and business use in the Indian
state of Rajasthan using a combination of household-level survey data and administra-
tive data. This model incorporates customer-level demographic characteristics, billing
cycle-level weather variables, and the fact that households are subject to electricity
outages and face increasing block price schedules for their electricity consumption. We
estimate two versions of the model that differ in how the relationship between electric-
ity use and consumption of each electricity service is modeled. The first model uses a
shape-constrained kernel regression and the second model uses a customer-level con-
stant elasticity of electricity consumption with respect to energy service model. Both
energy service demand models produce estimates of the response of each of the above
four categories of energy services to changes in the price of each energy service. Both
versions of the model also produce estimates of the marginal willingness to pay for an
additional hour of each of the four categories of energy services. The mean marginal
willingness to pay across customers for an additional hour an energy service is the
smallest for lighting and the largest for home appliance services.
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1 Introduction

Getting customers to pay for the electricity they consume is major challenge to the long-term

financial viability of electricity supply industries in many developing countries. It may be

cheaper for the customer to have an informal connection to the grid, make financial arrange-

ments with a meter reader to reduce their electricity bill, or simply not pay their bill. These

informal sources of electricity have the advantage of being lower cost, but they are also likely

to be less reliable and less able to provide a sizeable supply of electricity. Consequently, cus-

tomers with these kinds of connections are less likely to make investments in capital goods

that use a substantial amount of high quality electricity. This logic suggests that customers

with a sizeable demand for high quality electricity because of their electricity-consuming cap-

ital goods holdings are more likely to obtain a formal connection and pay their electricity bill.

A customer’s monthly electricity consumption depends on the demand for individual elec-

tricity services such as lighting, heating and cooling, household appliance use, and business

use. A customer’s willingness to pay for an additional hour of each of these services is likely

to differ for a variety of reasons. For example, during the nighttime hours, a customer might

have a significantly lower willingness to pay for an additional hour of heating or cooling ser-

vices than his willingness to pay for an additional hour of lighting services. A customer that

operates a business out of their dwelling might also be likely to be willing to pay substan-

tially more for an additional hour of business electricity services that other electricity services.

An understanding of the willingness to pay of customers for additional hours of different

kinds of energy services can help firms and regulators design pricing and other policy mech-

anisms to encourage customers to obtain formal connections that they pay for. For example,

if a customer has the highest willingness to pay for an additional hour business services, then

policies that support investments in electricity consuming goods for business use should en-

courage the customer to obtain a formal connection and pay her bill. The goal of this paper

is to provide customer-level information on the willingness to pay for four electricity services

in the Indian state of Rajathan: (1) lighting, (2) heating and cooling, (3) household appli-

ance use, and (4) business use.

To do this, we specify a model of the household-level demand for electricity services and

electricity demand using a combination of household-level survey data, conducted in two

districts of Rajasthan, and administrative data composed of household-level billing cycle

consumption, electricity bills, and tariffs. This model incorporates customer-level demo-
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graphic characteristics, billing cycle-level weather variables, and accounts for the fact that

households are subject to electricity outages and increasing block price schedules for their

electricity consumption.

Our model of the household-level electricity demand embodies the fact that electricity con-

sumption is the result of a household’s demand for hours of service from all electricity-

consuming capital goods that it owns. Households do not directly consume electricity, but

instead they purchase capital goods that when combined with electricity provide the services

they desire such as lighting, which combines electricity use with an electricity-consuming

lighting device. The amount of electricity that an hour of lighting service requires depends

on the number of lighting devices a household owns, the specific capital goods used to pro-

duce light, and when the capital good is used. Combining household-level survey data on

electricity appliance holdings and the monthly hours of use of each electricity-consuming

capital good with the household’s billing cycle electricity consumption and total bill allows

us to recover an estimate of the household’s demand for these individual electricity services.

We employ a two-step estimation procedure that first recovers what we call a household-level

“electricity consumption function” which characterizes the relationship between the house-

hold’s billing cycle level electricity consumption in kilowatt-hour (kWh) and total hours of

use of each of the four electricity services during that billing cycle. The estimated “elec-

tricity consumption function”, together with the hours of electricity services consumed and

information on the customer’s monthly electricity bill are used to estimate the household’s

billing cycle-level demand for each electricity service. The demand for each electricity service

is derived from an underlying model of utility-maximizing behavior subject to a nonlinear

budget constraint that arises because the household faces an increasing block price sched-

ule for their electricity consumption. Moreover, there is a nonlinear relationship between a

household’s demand for each electricity service and its total electricity consumption for the

billing cycle.

Our electricity service demand model recovers customer-level own-price and income elastic-

ities for different electricity services, as well as cross-price demand elasticities between the

different electricity services. The model also provides customer-level marginal willingness pay

values for an additional hour of each energy services. These measures can provide valuable

input into the design of policies that increase the likelihood that customers pay their bills.

For example, if customers have a high marginal willingness to pay for a certain electricity

service, then providing subsidies to purchase the capital goods necessary for the household to
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consume these services is likely to increase their willingness to pay for a reliable and sizeable

supply of electricity.

Our electricity consumption function estimates implies significant heterogeneity across cus-

tomers in the predicted increase in electricity consumption as a result of a marginal increase

in each energy service demand. There are two main reasons for this result. First, there

are differences in the quantity of energy consuming capital goods that produce each energy

service that each customer owns. For example, depending on what kind or how many televi-

sions, washing machines, or microwave ovens a household owns, the electricity consumption

per hour of use of each energy service can vary across customers.

Second, how intensively the various appliances within each energy service category are used

can vary depending on weather conditions. For example, when it is extremely hot outside

a household might stay inside and watch more television and wash clothes rather than use

other appliances in that energy service category. A given appliance can consume more elec-

tricity depending on weather conditions. For example, one hour of use of an air conditioner

when it is extremely hot outside consumes more electricity than it does during milder days.

Results from our energy services demand system finds significant differences in the own-price

elasticity of demand across the four energy services and significant differences across cus-

tomers in these own price elasticities for the same energy service. There is also considerable

heterogeneity in the income elasticity of demand across these four services with the highest

income elasticity for domestic end-uses and lowest for heating and cooling or lighting, de-

pending on the version of the model.

Finally, we demonstrate how our model can be used to recover estimates of household will-

ingness to pay for each electricity service. Both models find that the mean (across billing

cycles and customers) willingness to pay for an additional hour of an energy service is highest

for appliances and then business uses. The lowest mean willingness to pay is for lighting.

These results suggests a number of policies to increase the willingness of customers to pay

for the electricity they consume that we discuss in Section VIII.

The remainder of the paper proceeds as follows. Section II sets the context for this research

by describing the current challenges facing developing country power sectors and the Indian

power sector in particular and summarizes previous research that is related to our research

either topically or methodologically. Section III describes the datasets used in our analysis
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and presents descriptive statistics from these data to provide context for our analysis. Section

IV describes the two econometric models of energy services demand. Section V describes the

estimation procedure and results. Section VI estimates the willingness to pay for the four

categories of electricity services for households in Rajasthan. We conclude and discuss the

policy implications of our results in Section 7.

2 Background

This section first describes the revenue shortfall relative to production cost problem that is

common to virtually all developing country electricity supply industries. We then summarize

dire financial conditions facing most electricity retailers in India. We then discuss the use

of increasing block tariffs for residential electricity consumers in India and how they impact

modeling the electricity demand for electricity and other infrastructure services.

2.1 Two energy worlds

Burgess et al. (2020) introduce the distinction between two energy worlds. In the first, cit-

izens enjoy universal access to electricity 24 hours per day. In the second many citizens

are not connected to the transmission and distribution network and those that are have an

unreliable supply that many customers don’t fully pay for. The authors argue that a major

reason for the persistence of the extreme version of the second world is that the governments

in these countries treat electricity as a right whether or not the customer pays for it. This

leads to significant revenue shortfalls relative to the cost of the electricity delivered to con-

sumers.

These revenue shortfalls can occur both because customers with formal connections do not

pay their bill or customers with informal connections consume without being billed. There

have been a number of studies exploring the determinants of this behavior. Yurtseven (2015)

considers the case of Turkey and finds a number of predictors of this behavior such as whether

a region is rural, low income, or has higher electricity prices. Depuru et al. (2010) present

across-country evidence that supports these factors as important predictors of revenue short-

falls. Although there are many reasons that customers do not pay their bills or establish

informal connections, the final outcome is that customers appear to value an unreliable, but

low cost, supply of electricity over a possibility more reliable supply that they pay for.
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One reason for customers to pay for the electricity in first energy world is because they have

a high marginal willingness to pay for an additional hour of at least one electricity service.

For example, customer with large refrigerator filled with food that will spoil unless it is kept

cold has a high marginal willingness to pay for an additional hour of appliance services.

Customers with a minimal amount of electricity consuming capital, such a few lights and

a fan, are significantly less likely to be willing to pay for a reliable supply of the electricity

than customers that own expensive appliances that consume significantly more electricity

per hour of use and are more likely to be permanently damaged by an unreliable supply of

electricity.

By estimating the customer-level demand for electricity services, we can recover estimates

of the marginal willingness to pay for an additional hour of each electricity service by each

customer in our sample. This information identifies individual customers that are likely to

be willing to pay for reliable supply of electricity. Distribution utilities can focus their grid

upgrade efforts on ensuring a reliable supply of electricity in regions with customers that

have a high marginal willingness to pay for at least one electricity service.

2.2 Indian electricity supply industry experience

Electricity for household consumption accounts for approximately a quarter of all electricity

sales in India. A sizable portion of these sales are made by publicly-owned electricity distri-

bution companies at prices significantly lower than the average revenue required to recover

costs, which puts much of India squarely in the second energy world. Burgess et al. (2020)

provides significantly more detail on the Indian experience.

Electricity prices in Rajasthan, like much of rest of India, follow an increasing block tariff

(IBT) structure for energy and a fixed charge. As shown in Figure 1, the marginal price

is the same for all consumption on a block or range of monthly consumption but increases

for higher amounts of consumption. Rajasthan’s tariff schedule also has a lower first-block

energy charge for households possessing a below poverty line (BPL) card issued by the gov-

ernment. BPL households are required to pay the usual energy and fixed charges if their

consumption exceeds more than 50 kWh during a billing cycle.

Using a household survey, we use appliance level ownership and usage data to estimate a

demand model for energy services. In estimating this model, we account for consumption-
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specific charges under the IBT price schedule and variation in weather conditions within a

household’s billing cycle. The model also incorporates heterogeneity in residential demand

due to observable socio-economic characteristics-–such as, income, family sizes and other

observable factors that differ across customers. In addition to household survey data, the

analysis also uses an administrative billing data set containing four years of metered con-

sumption data for every household in two districts of Rajasthan – Jaipur and Alwar – served

by a local electricity utility called JVVNL.

In the Indian context, two data sources that have been previously used to study electricity

demand are the National Sample Survey Office’s (NSSO) consumption expenditure rounds

and panels of the India Human Development Survey. Both sources are known to miss the

top of the income distributions and report electricity consumption based on self-reported

figures. These surveys are not designed to accurately measure residential electricity con-

sumption and therefore do not capture the full distribution of electricity consumed in a

region. Figure 2 compares the consumption distribution from the administrative billing data

of JVVNL consumers from 2015-16 to NSSO’s consumption expenditure survey of 2011-12

for districts served by JVVNL. The figure highlights the fact that, assuming distribution

neutrality between these sets of years, NSSO consumption data is particularly imprecise in

capturing the top ends of the consumption distribution.

Our data on a household’s billing cycle-level electricity consumption is obtained from the

household’s actual electricity bill. We also use data on appliance holding and hours of use

of each appliance for the inventory of energy-consuming appliances owned by the household

from our survey data. Our model of the demand for energy services also depends on observ-

able socioeconomic characteristics of the household from our survey and weather conditions

during the household’s billing cycle. This allows us to recover the price-responsiveness of

demand into four categories of energy services demand as well as the overall responsiveness

of electricity demand to the price of electricity.

2.3 Customer demand under IBT schedules

IBTs are not unique to India and the estimation of residential electricity demand under IBT

schedules has been studied extensively in industrialized country settings. Reiss and White

(2005) use annual data from a sample of California households to estimate electricity demand

under IBT pricing. The model is then used to analyze the effect of tariff changes on changes

in consumption and the share total monthly expenditure a household spends on electricity.
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McRae (2015) conducts a similar exercise in a developing country setting using billing cycle

level data, rather than annual data. He uses appliance ownership data from the Colombian

census paired with the customer’s utility billing data to estimate his model of customer-level

billing cycle demand under nonlinear pricing. McRae uses the demand estimation under

non-linear pricing econometric modeling framework developed by Hanemann (1984) to re-

cover the parameters of household-level preference functions.

More recently, Wang and Wolak (2022) introduce a new model customer-level demand under

IBTs that accounts for the fact that customers cannot precisely control their consumption

during the billing cycle. Instead, customers make at the beginning of the billing cycle es-

timate of what marginal price they will face at the end of the model. Conditional on this

expected utility maximizing marginal price choice, they consume for the entire billing. The

authors apply this modeling framework to two samples of water utility customers facing IBTs.

3 Data Used in Analysis

The data used in this paper are from three different sources: (i) administrative data on billing

cycle-level electricity consumption and bills issued; (ii) detailed household demographic char-

acteristics and appliance ownership and use from a survey designed and implemented in 2017;

and, (iii) daily temperature and precipitation data. Each of these data sources are described

in below with additional details in Appendix B.

3.1 Electricity consumption and prices data

We collected administrative cycle-level billing data directly from JVVNL and exclude all

non-residential consumer bills from it. The dataset has a unique connection identifier which

is used to match households across survey and administrative datasets. The dataset provides

the total amount electrical energy consumed during the billing cycle, the calendar dates on

which the meter was read, the total energy charges and fixed charges, electricity duties,

subsidies, and other charges included in the bill. It does not record the consumption tier

and the corresponding marginal price of electricity.

We back out the consumption and marginal prices by calculating the per-unit energy price
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from the total energy cost provided in the billing dataset and comparing it to the per-unit

charges across consumption tiers as prescribed in the tariff schedule. Appendix B contains

an example of this exercise.

JVVNL generally produces bills at a bimonthly frequency, depending on the schedule of a

roving meter reader. Meter readers walk a different route over each day of a bimonthly

period to visit residences and compile the total kWhs consumed since their last visit. This

results in different sets of customers having different bi-monthly billing cycles based on the

days on which the meter reader can reach the customers residence. To guard against possible

billing errors, we exclude observations for which the billing cycle is more than 180 days.

If the meter reader is unable to establish contact with the household or if the meter appears

to be malfunctioning at the time of reading, the consumption figures for the household are

not captured in the billing dataset. In such cases, JVVNL makes an imputation based on the

average consumption of the household over the past six months. We drop these observations

from our sample, resulting in exclusion of an additional 1,250 observations (13% of the data).

To provide an overview of prices and consumption variables in the dataset, Table 1 shows

the summary statistics for all households over 2014-2017 period. The average monthly per

capital consumption of electricity in the sample is 39.7 kWhs – more than double the per

capital residential usage of 15 kWh in Rajasthan in 2012 according to Prayas (2016). The

increase in the per capital electricity consumption reflects robust economic growth and rapid

rates of electrification in the region.

The marginal prices on the increasing block tariff for our sample of customers was revised

twice during our sample period. Figure 3 shows the distribution of average daily household

consumption by the month, with red labels in the horizontal axis indicating the periods in

which these tariff changes occurred. There is clear seasonality in the consumption levels–

with peak and troughs during the summer and winter months respectively. We refer the

reader to Appendix B for additional validation checks conducted on the dataset.

We also have outage data for our sample period for the distribution network served by each

household in our sample. We merge this information with household location data to obtain

household-specific outage data.
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3.2 Household characteristics

The household characteristics we include in our model are taken from a survey of households

carried out in two districts of Rajasthan. The survey, conducted as part of World Bank

electricity lending program in the state, was administered by a local team of fieldworkers

with extensive experience working and residing in these areas. The goal of the survey was

to collect household demographics, socio-economic data, appliance ownership and use, and

unique household level billing codes to match survey data to the billing database. The survey

enumerated approximately 2,000 households.

Our data on a household’s billing cycle-level electricity consumption is obtained from the

household’s actual electricity bill. We also use data on appliance holding and hours of use

of each appliance for the inventory of energy-consuming appliances owned by the household

from our survey data. Our model of the demand for energy services also depends on observ-

able socioeconomic characteristics of the household from our survey and weather conditions

during the household’s billing cycle. This allows us to recover the price-responsiveness of

the demand for the four categories of energy services as well as the overall responsiveness of

electricity demand to the price of electricity.

Table 2 shows that the consumption distribution of the sampled households, weighted by

the sampling weights, is able to replicate the population consumption distribution from the

billing cycle-level dataset for all customers in the two districts of Rajasthan for our sample

period. These matching patterns allay concerns related to sample selection in the overall dis-

tribution, except from the 95th percentile onwards of the consumption distribution–where

our sample appears to represent a lower fraction of households than in utility’s customer

database.

To measure household-level income, the survey contained several modules pertaining to

farming, raising livestock, self-employment, casual labor activities, salaries from jobs and

remittance earnings for each adult member of the household. Total household income was

calculated as the sum of incomes across each of these modules and household members. The

survey had a non-response rate of approximately 9% on income questions, so we exclude

these households from our base sample. To keep the survey tractable and short, we did

not capture household consumption expenditure or assets and liabilities information. As

a result, we are unable to calculate disposable income separately from total household in-

come. Finally, we exclude household-bills for which the annualized electricity bill amount

was greater than 75% of annual reported household income. This restriction is imposed to
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account for the fact that households also need to pay for food and other essentials besides

electricity throughout the year.

After excluding observations based on the income criteria and after matching household

survey data to the administrative data, we are left with a observation count of 7,615 billing-

cycle level observations comprising of 805 unique customers. Ninety-six percent of these

observations are from consecutive cycles, implying that a majority of households do not sort

in and out of the panel. Table 3 summarizes socioeconomic characteristics of the sampled

households and shows the share of households by various employment categories.

The survey also collected information on ownership and intensity of use of electrical appli-

ances, allowing us to estimate the demand for residential energy services. We categorize each

of the 24 appliances covered in the survey to one of the four energy service categories (as

shown in Appendix A). The energy demand for each of the four energy services is calculated

by summing up the hours of energy services demand for all electricity consuming capital

goods in that category. We further restrict our sample to household-bills that have positive

energy demand for all four services, which leaves us with 3977 billing-cycle observations and

611 unique customers. In Figure 4, we plot the histograms of the service demand for the

four categories in hours of use per day.

3.3 Temperature and precipitation data

The daily temperature and rainfall data are available at a 1 degree latitude by 1 degree longi-

tude and 0.25 degree by 0.25 degree gridded resolution from Srivastava et al. (2009) and Pai

et al. (2014), respectively. We match the locations of the villages and census enumeration

blocks to these grids to obtain household-level measures of temperature and rainfall. Figure

7 shows deviations of daily temperature and rainfall in an area from its three-year period

average (2014-2017). The precipitation curve shows that there is little variation in rainfall

across time and regions. The low average precipitation levels in the region also explains the

high ownership rates of evaporative air coolers as observed in the survey data. The temper-

ature plot highlights the substantial heterogeneity in climatic conditions across villages and

enumeration blocks even within the same month. This heterogeneity in temperatures across

regions is exploited in later sections to estimate household-level demand.
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4 Econometric Model

The development of our econometric model of the billing cycle-level household demand for

electricity services proceeds in three steps. First, we present our model of the customer-level

outage distribution. Second, we present the household-level electricity consumption func-

tion relating the household’s energy services demands to its electricity consumption. Third,

using results from the previous two steps, we specify a household-level utility function for

energy services and estimate it using the first-order conditions for expected utility maximiz-

ing choices of the electricity services.

4.1 Outage Factor

The outage factor is defined as the fraction of time during the billing cycle that the electricity

is unavailable to the household. For households included in our dataset, the average outage

factor is 0.3. This can have significant impact on both household’s electricity consumption

function and demand model. Model how households take into account random outages in

making their electricity service choices, we first need to model the distribution of the outage

factor, since it is a random variable.

We plot the histogram of the outage factor in Figure 8. From the histogram, we can see that

most of the outage factors fall into two clusters, the range of 0 to 0.2 or the range of 0.6 to

0.8. Therefore, we model the outage factor as a mixture of two beta distributions, with the

probability p of having distribution Beta(a1, b1) and probability 1− p of having distribution

Beta(a2, b2). We choose beta distribution mainly due to its flexibility and the fact that it

has support on the interval (0,1).

Further, different household may have different outage factor distributions. For exam-

ple, electricity grid might be more reliable in high-income neighborhood, or less reliable

in rainy days. Therefore, We allow the probabilities p and parameters of the two beta

distributions (a1, b1, a2, b2) to vary based on household characteristics and weather infor-

mation. Specifically, let βp, βa1, βb1, βa2, βb2 be the parameters that we want to estimate.

Let Xi be the household-level variables for household i, including both household char-

acteristics and weather information. Then the outage factor distribution for household i

is the mixed distribution with probability exp(βpXi)/(1 + exp(βpxi)) of having distribu-

tion Beta(exp(βa1Xi), exp(βb1Xi)) and probability 1/(1 + exp(βpxi)) of having distribution

Beta(exp(βa2Xi), exp(βb2Xi)). In addition, consistent with our earlier discussion, the reli-
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ability of electricity grid can be quite different in urban versus rural areas. Therefore, we

estimate the outage factor distribution separately for urban and rural areas.

4.2 Electricity Consumption Function

Household-level electricity consumption depends on the hours of various categories of elec-

tricity services demand by the household–namely heating and cooling, lighting, household

appliances for domestic end-uses, and appliances for business end-uses. However, the house-

hold pays for electricity consumption that results from their demand for these services.

Therefore, we need to characterize the relationship between the household’s electricity con-

sumption and household’s hours of use of each of four electricity services.

Let si equal the household’s demand for energy service i in hours of use, s = (s1, s2, ..., sN)′

equal the vector of energy services demand for the N services that the household consumes.

Let Si = ln(si) and S = (S1, S2, ..., SN)′. Let e equal the household’s electricity consumption

in kilowatt-hours (KWh) and E = ln(e) = f [S] + ε where f [S] is the household’s electricity

consumption function that converts the vector of the logarithms of individual energy ser-

vices into the logarithm of electricity use, and ε is a random variable that is unobserved by

the household and the researcher that captures the technological uncertainty in amount of

electricity (e) consumed by a given vector of the logarithm of energy services S. We use

two approaches to characterize the function f(·). The first takes a nonparametric approach

that does not account for observable customer-level heterogeneity. The second specifies a

parametric model that imposes restrictions not rejected by our nonparametric approach that

accounts for significant observable heterogeneity across customers in the electricity consump-

tion function.

4.2.1 Constrained Kernel Regression

Our nonparametric model for the electricity consumption function imposes two restrictions

consistent with the physics governing electricity service use and electricity consumption.

First, we expect that an increase in any electricity consuming service should increase elec-

tricity consumption. Therefore, we impose the constraint that the partial derivative of f [S]

with respect to any element of S is positive.

Second, we expect that the electricity consumption function should at least exhibit constant
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return to scale. For example, if we double the demand for all the categories of service, we

expect the electricity consumption to at least double as well. In terms of the logarithm, this

means that the sum of the partial derivatives of f [S] with respect to the four elements of

S should sum up to at least 1. As we discuss below, the validity of both of these sets of

restrictions can be tested empirically using our dataset.

4.2.2 Parametric Functional Form with Customer-Level Heterogeneity

Our preferred alternative is to specify an parametric functional form for the electricity con-

sumption function that allows for differences in this function across households and billing

cycles based on household demographic characteristics and weather information. Let wjt be

the household-level information for household j for billing cycle t. Let sijt equal the house-

hold j’s demand for energy service i in hours of use during billing cycle t. Let Sijt = ln(sijt)

and Sjt = (S1jt, S2jt, ..., SNjt)
′. Let ejt equal the household j’s electricity consumption during

billing cycle t in kilowatt-hours (kWh) and Ejt = ln(ejt) = fjt[Sjt] + εjt.

We assume that

fjt[Sjt] =
N∑
i=1

αijtSijt + δj

where

α1jt =
1

1 +
∑N

k=2 exp(w
′
jtγk)

αijt =
exp(w′jtγi)

1 +
∑N

k=2 exp(w
′
jtγk)

for i = 2, 3, . . . , N

We assume the electricity consumption function to be a household fixed effect plus a linear

combination of service demand, allowing the coefficient to vary based on household-level vari-

able and weather information for that billing cycle. Note that the functional form guarantees

that the partial derivatives of the logarithm of electricity consumption with each respect to

the logarithm of each service demand are non-negative and sum up to 1.

4.3 Model of Electricity Services Demand

Our model of the demand for energy services makes use of data from the household survey

of appliance use to account for the well-known fact that electricity is a derived demand. The
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model also accounts for the fact that customers outages in the distribution grid which can

prevent them from consuming electricity during the billing cycle. Our model implies that a

household’s realized demand for electricity is derived from its demand for each energy service

provided by each electricity-consuming capital good owned such as a light bulb, fan, or air

conditioner. Moreover, the amount of electricity consumed to provide a fixed quantity of

electricity services, say an hour of computer use, is uncertain because of factors such as the

background temperature and intensity of use of the appliance as well as outages. We now

describe the household demand model incorporates both the outage factor distribution and

the electricity consumption function to recover the household’s demand for the four energy

services.

Let si equal the household’s demand for energy service i in hours of use, s = (s1, s2, ..., sN)′

equal the vector of energy services demand for the N services that the household consumes.

Let Si = ln(si) and S = (S1, S2, ..., SN)′. Let e equal the household’s electricity consumption

in kilowatt-hours (KWh) and E = ln(e) = f [S] + ε where f [S] is the household’s electricity

consumption function which is described previously, and ε is a random variable that is un-

observed by the household and the researcher.

To account for impact of distribution network outages, S is assumed to decomposed into

a planned vector of energy services used, S, and a random outage fraction, AF , which is

a random variable defined on the interval (0,1) and equal to the fraction of hours in the

billing cycle that electricity is available to the household. The distribution is described pre-

viously. These variables are assumed to satisfy the equation: S = S + ι ∗ ln(AF ), where

ι = (1, 1, 1, 1)′, so that all services consumed are reduced by the same proportion, AF , as a

result of outages within the billing cycle.

Let p(e) equal the potentially nonlinear price schedule that the household faces, where p(e)

is the marginal price paid at electricity consumption level e. Let T (e∗) =
∫ e∗
0
p(e)de equal

household’s total bill under nonlinear price schedule p(e) for consumption level, e∗. Note the

T (e) includes any fixed charge that must be paid regardless of the household’s monthly con-

sumption. Suppose the household consumes a composite ”outside” good besides electricity

that equals the difference between the households’s total monthly income and its electricity

bill. Let xit equal this ”outside” good expenditure for household i during billing cycle t. The

distribution xit across households and billing cycles is presented in Figure 9).

The household is assumed to have the preference function, U(S,X,A,W ) where S = S+ ι∗
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ln(AF ) and X = ln(x). This utility function depends on the vector of realized energy services

consumed by the household, S, its demand for x and observable characteristics of the house-

hold, A, and a vector of weather variables, W . Note that because of the outages during the

billing cycle the household’s desired vector of energy services, S, is not equal the actual energy

services is consumes, S. The household’s budget constraint is equal to T (e)+pxx ≤M , where

px is the price of x, M is the household’s income, and e = exp(f [S+ι∗ ln(AF )]+ε). In terms

of the (S ′, X)′, the budget constraint becomes M = T{exp(f [S+ι∗ln(AF )]+ε)}+pxexp(X).

Each billing cycle the household is assumed to choose their consumption of each energy

service to maximize expected utility (where the expectation is taken with respect to the

technological uncertainty ε and the outage uncertainty, AF ). The problem takes the form:

max
s,x

Eε,AF [U(S + ι ∗ ln(AF ), X,A,W ) | (A,W )] (1)

subject to T{exp(f [S + ι ∗ ln(AF )] + ε)}+ pxexp(X) ≤M

where Eε,AF [(·)|(A,W )] implies taking the expectation with respect to the distribution of ε

and AF conditional on the values of (A,W ). Using the budget constraint to solve for the

demand for X given the demand for S yields:

X = ln[M − T{exp[f(S + ι ∗ ln(AF )) + ε]}]− ln(px) (2)

Substituting into the household’s utility function yields the equivalent problem to (5.2.1):

max
S

Eε,AF [U(S+ι∗ln(AF ), ln[M−T{exp[f(S+ι∗ln(AF ))+ε]}]−ln(px), A,W )|(A,W )] (3)

which has the following first-order conditions:

∂Eε,AF [U(S + ι ∗ ln(AF ), ln[M − T{exp[f(S + ι ∗ ln(AF )) + ε)}]− ln(px), A,W )|(A,W )]

∂Sj
= 0

for j = 1, 2, ..., N (4)

Switching the order of integration and differentiation yields:

Eε,AF [∂U(S + ι ∗ ln(AF ), ln[M − T{exp[f(S + ι ∗ ln(AF )) + ε]} − ln(px), A,W )|(A,W )]

∂Sj
= 0

(5)
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This implies:

Eε,AF{
∂U(S + ι ∗ ln(AF ), ln[M − T (e)]− ln(px), A,W )

∂Sj

−∂U(S + ι ∗ ln(AF ), ln[M − T (e)]− ln(px), A,W )

∂X

p[e]e

M − T (e)

∂f

∂Sj
|(A,W )} = 0 (6)

for j = 1, 2, ..., N.

Note that ln(e) = f(S + ι ∗AF ) + ε, where S is observed by the econometrician. Also note
∂f(S + ι∗AF )

∂Sj
depends on the realization of AF . Therefore, the first-order conditons for the

expected utility-maximizing choices of the N = 4 energy services become:

Eε,AF{
∂U(S + ι ∗ ln(AF ), ln[M − T (e)]− ln(px), A,W )

∂Sj

−∂U(S + ι ∗ ln(AF ), ln[M − T (e)]− ln(px), A,W )

∂X

p[e]e

M − T (e)

∂f(S + ι ∗ AF )

∂Sj
} = 0 (7)

for j = 1, 2, ..., N

5 Estimation Procedure and Results

In this section, we describe how we estimate the econometric models described in the previous

section and present the estimation results.

5.1 Outage factor distribution

We estimate the parameters of the mixed distribution by maximizing the overall likelihood.

We start with the specification that includes both household demographic variables and

billing cycle-level weather information. We then test whether the parameters for household

demographic variables are jointly equal to 0. For urban area model, we cannot reject the null

hypothesis that household demographic variables predict differences in the outage factor.

Thus we only include weather information for the rural area, but include both weather

information and household demographics for the urban area. The included variables and the

parameter estimates for both models are presented in Table 4.

5.2 Electricity consumption function

In this subsection, we present our estimates of our two approaches to estimate the electricity

consumption function. For both models we plot the histogram of the partial derivatives of
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E with respect to the elements of S.

5.2.1 Constrained Kernel Regression

To perform the constrained kernel regression, we follow the procedure outlined in Du et al.

(2013). The key idea is to re-weight data points that make up the kernel regression so that

the estimated kernel model satisfies all the constraints. Let {Yi, Xi}Mi=1 denote sample data

we have on electricity consumption and energy service demand. We are trying to estimate

the electricity consumption function f(·), while Yi = f(Xi) + εi. It is not possible to impose

the constraints on all points in the function support. Thus we have to choose a subset of

points in the function support to impose the constraints. Let {Xc
i }Ki=1 denote such subset of

points.

Consider a generalized kernel regression with Nadaraya-Watson estimator in the following

form

f̂(x) =
M∑
i=1

piAi(x)Yi

where Ai(x) = MKh(Xi, x)/
∑M

j=1Kh(Xj, x). For an unrestricted kernel regression, we take

pi = 1/M, i = 1, . . . ,M . Since we have certain constraints on the derivative of f(·) described

in section 4.2.1, we need to select pi to satisfy those constraints. Let pu be the M -vector of

uniform weights and let p be the vector of weighs to be selected. We choose p to minimize

the distance from p to pu but still satisfy our constraints. Here we allow for both positive

and negative weights while retaining
∑

i pi = 1. We define distance asD(p) = (pu−p)′(pu−p).

For constraints, let f̂w(X) denote the derivative of f̂(·) with respect to the wth service. The

two constraints are then:

f̂w(X) > 0 for w = 1, 2, 3, 4

4∑
w=1

f̂w(X) = 1

In practice, it is very hard to satisfy the equality constraint. Thus we relaxed the constraint

on the sum of the partial derivatives to lie in the range between 0.98 and 1.02. As a robust-

ness check, we tried other ranges and got similar results.
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To sum up, we are solving the following optimization problem:

min
p

(pu − p)′(pu − p), subject to∑
i

pi = 1 (8)

f̂w(XC
i ) > 0 for w = 1, 2, 3, 4, i = 1 . . . K

0.98 ≤
4∑
j=1

f̂ j(XC
i ) ≤ 1 for i = 1 . . . K

Now we need to decide what data we use to estimate the kernel regression, namely, {Yi, Xi}Mi=1.

It is very computationally intensive to perform the constrained kernel regression on bill-level

data (3977 data points), which means optimizing the objective function over 3977 parameters

under thousands of constraints. In addition, bill-level data are more volatile and susceptible

to measurement error that they create more extreme data points, which cause extra diffi-

culty for the kernel estimation and constraints. Thus for computing reason, we aggregate

the household-bill level data into household level data (611 household) to decrease the size

of the optimization problem. For each household, we calculate its daily average of electricity

consumption and service demand over the entire period considered as its observation.

We also need to decide which points we impose the constraints on, namely, {Xc
i }Ki=1. Fol-

lowing Du et al. (2013), we impose the constraints on all the points that we use to estimate

the model, namely {Xi}Mi=1. In addition, we impose the constraints on a grid with 7 points

on each dimension, with the 7 points evenly placed, and covered the main range of support

for each dimension (a total of 74 = 2401 grid points).

The estimated partial derivatives of f̂(·) with respect to the elements of energy service are

presented in Figure 10. One may notice that some gradients fall out of the range between 0

and 1, which seems to violate the constraints we impose. This is because we impose the con-

straints on the household-level data points, while the gradients presented are on the bill-level

data points. Out of the 3977 bill-level data points, more than 3400 data points satisfy both

type of constraints. For the points that do not satisfy both constraints, they are usually not

far off. To be consistent and comparable with the parametric model, we still keep these data

points in the sample.

Lastly, we want to check whether the constraints we imposed are valid. Following Du et

al. (2013), we performed a hypothesis test on whether the constraints are correct. We use
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a bootstrap approach. We first calculate the residual ε̂i using the model and parameter

estimates discussed above, and then generate resamples for Yi via iid residual resampling.

These resamples are generated under the null hypothesis that these constraints are correct.

By recomputing D(p∗) for the bootstrap sample , we can generate the null distribution of

D(p̂). We compute the empirical P value, PB, as the proportion of the bootstrap resamples

D(p∗) that exceed D(p̂). In our case, we repeat the process 100 times, and get a empirical

P-value of 0.96, thus failing to reject the null hypothesis.

5.2.2 Parametric model with customer-level heterogeneity

Our parametric model with customer-level heterogeneity takes the following form

Ejt =
N∑
i=1

αijtSijt + δj + ηjt

where

α1jt =
1

1 +
∑N

k=2 exp(w
′
jtγk)

αijt =
exp(w′jtγi)

1 +
∑N

k=2 exp(w
′
jtγk)

for i = 2, 3, . . . , N

and the ηjt are a sequence of independent identically distributed mean zero random variables

with finite support. We fit the parameters of the model by nonlinear least squares. The es-

timates for γ are presented in Table 5. Note that we treat heating and cooling as the ”first”

service, so that there are no γ for heating and cooling. Similarly, we plot the distribution

of the derivative of Eit with with respect to the four elements of Sit across customers and

billing cycles in Figure 11.

5.3 Model of electricity services demand

To use the four sets of moment conditions in equation (4.3) to estimate the parameters of the

household’s preference function. In order to facilitate the estimation process and simulation

of counterfactual solutions, we assume the following functional form for U(S,X,A,W ). Let

Z = (S ′, X)′. Define

U(Z) = a(A,W )′(Z − Z̄) +
1

2
(Z − Z̄)′Γ(Z − Z̄)
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where a(A,W ) = (exp(V ′1β1), ..., exp(V
′
N+1βN+1))

′ is a (N+1)×1 vector of positive functions

of elements of A and W for that household and billing cycle and Z̄ is the sample mean of

the vector Z. The vectors V1 to VN+1 are composed of elements of A and W expressed in

deviations from the mean, which implies the sample mean of the non-constant elements of

Vi are zero for i = 1, 2, ..., N + 1. Note the the constant term in VN+1 must be normalized to

equal 1. This sets the scale of the cardinal utility function U(Z). The elements of a(A,W )

will allow the marginal utility of consuming each electricity service to differ across households

and billing cycles. The matrix Γ is assumed to be symmetric and negative definite, which

implies the following Cholesky factorization: LDL′, where L is a lower triangular matrix

with 1’s along the diagonal and D is a diagonal matrix with dkk ≤ 0 for all k.

In terms of this notation, the gradient vector of U(Z) is:

∂U(Z,A,W )

∂Z
= a(A,W ) + Γ(Z − Z̄)

Note that the first four elements of this vector are ∂U(Z,A,W )
∂Sj

for j = 1 to N and the last

element is ∂U(Z,A,W )
∂X

.

Let the index i denote households, t denote billing cycles, and j denote energy services. Let

`jit(θ, eit, AFit) = Hit[
∂U(S + ι ∗ ln(AFit), ln[M − T (eit)]− ln(px), A,W )

∂Sjit

−∂U(S + ι ∗ ln(AFit), ln[M − T (eit)]− ln(px), A,W )

∂Xit

p(eit)eit
M − T (e− it)

∂f(S + ι ∗ AF )

∂Sj
] (9)

where Hit = (1, A′i,W
′
it, AW

′
it)
′ and θ is the vector of parameters to be estimated: βi for

i = 1, 2, ...(N + 1) and the elements of L and D, where Γ = LDL′. The vector AWit is com-

posed of functions of elements of the Ai and Wit sufficient to identify all of the parameters

of model.

Let fAF (.|i, t, eit) equal the estimated density of AFi,t given the value of eit, household i’s

electricity consumption in billing cycle t. Draw K values from this density and substitute it
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into the above equation and compute:

`jit(θ, eit) =
1

K

K∑
k=1

Hit[
∂U(S + ι ∗ ln(AF k

it), ln[M − T (eit)]− ln(px), A,W )

∂Sjit

−∂U(S + ι ∗ ln(AF k
it), ln[M − T (eit)]− ln(px), A,W )

∂Xit

p(eit)eit
M − T (eit)

∂f(S + ι ∗ ln(AF k
it))

∂Sj
]

(10)

Stacking the `jit(θ, eit) into a vector for each energy service yields:

`it(θ, eit) = (`1it(θ, eit)
′, `2it(θ, eit)

′, ..., `Nit(θ, eit)
′)′.

Solving for the values of θ that minimizes:

min
θ
L(θ)′ΣL(θ) (11)

where

L(θ) =
1

I

I∑
i=1

1

T (i)

T (i)∑
t=1

`it(θ, eit) (12)

and T (i) is the number of billing cycles available for household i, and Σ is a positive defi-

nite weighting matrix of the same dimension as the number of rows of `it(θ, eit), will yield a

consistent estimate of θ. Starting with Σ = I the identity matrix is the most straightforward.

Given a consistent estimate of θ, say θ̂, compute

V (θ̂) =
1

I

I∑
i=1

[
1

T (i)

T (i)∑
t=1

`it(θ̂)][
1

T (i)

T (i)∑
t=1

`it(θ̂)]
′

Solving for the value of θ that minimizes:

min
θ
L(θ)′V (θ̂)−1L(θ) (13)

yields consistent and asymptotically efficient estimates of θ. Call this value θ̃.

Estimated variance of these estimates can be computed as:

1

I
[D(θ̃)′V (θ̂)−1D(θ̃)]−1
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where

D(θ) =
1

I

I∑
i=1

1

T (i)

T (i)∑
t=1

∂`it(θ)

∂θ

When estimating the service demand model with constrained kernel regression as the electric-

ity consumption function, some of the parameter estimates were very imprecisely estimated

because this model does not allow for customer-level heterogeneity in the electricity con-

sumption function. Therefore, when performing the optimization problem that computes

the estimates of the elements of θ, we add a lasso regularization term to zero out some

of the parameters. These parameters are shown as zero with NA standard error when we

present the estimation results for this model. This problem did not arise for our preferred

specification which allowed for customer-level and weather-dependent heterogeneity in the

electricity consumption function.

The parameter estimates for the service demand model when using constrained kernel regres-

sion for the electricity consumption function are presented in Table 6 and 7. The parameter

estimates for the service demand model using the electricity consumption function with cus-

tomer and billing cycle weather heterogeneity are presented in Table 8 and 9. We also report

the Hansen (1982) test for the validity of the over-identification restrictions for each model.

For both models we do not find any evidence against the null hypothesis of the validity of

these over-identifying restrictions.

6 Implications of Model

6.1 Service demand elasticities

Our demand models can be used to calculate the price elasticity of demand and income

elasticity of demand for each energy service. Let pE be the marginal price of electricity

for the household, and the marginal price for energy service i as psi = ∂exp(f(Si))
∂exp(Si)

pE =
exp(f(Si))

si

∂f(Si)
∂Si

pE, which is the product of the marginal price of electricity and increase elec-

tricity consumption associated with one hour increase in the use of energy service i.

For the purpose of calculating elasticity with respect to service demand, we reformulate

the household’s the utility maximization problem as a standard household choice problem

subject to a linear budget constraint using the above marginal prices of each energy service.
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The solution to this problem yields conventional demand functions that depend on the values

of psi for i = 1, 2, .., N and the price of the outside good:

max
Z

U(Z) subject to
5∑
i=1

exp(Pi)exp(Zi) ≤ exp(M) (14)

where Z = (ln(s1), ln(s2), ln(s3), ln(s4), ln(x)), P = (ln(ps1), ln(ps2), ..., ln(px)) and M =

ln(m). Let λ be the Lagrange multiplier. Taking the first order condition yields

∂U

∂Zi
− λexp(Pi)exp(Zi) = 0,∀i (15)

−
5∑
i=1

exp(Pi)exp(Zi) + exp(M) = 0 (16)

Note that Z and λ are functions of P and M . Now we take derivative of Equation 15 for Zi

with respect to Pi, Pj for j 6= i and M , we get the following equations:

5∑
k=1

∂2U

∂Zi∂Zk

∂Zk
∂Pi
− ∂λ

∂Pi
exp(Pi)exp(Zi)−

∂Zi
∂Pi

λexp(Pi)exp(Zi) = λexp(Pi)exp(Zi) (17)

5∑
k=1

∂2U

∂Zi∂Zk

∂Zk
∂Pj
− ∂λ

∂Pj
exp(Pi)exp(Zi)−

∂Zi
∂Pj

λexp(Pi)exp(Zi) = 0 for j 6= i (18)

5∑
k=1

∂2U

∂Zi∂Zk

∂Zk
∂M
− ∂λ

∂M
exp(Pi)exp(Zi)−

∂Zi
∂M

λexp(Pi)exp(Zi) = 0 (19)

Similarly, we can take derivative of Equation 16 with respect to Pj for any j and M , we get

the following:

−
5∑
i=1

exp(Pi)exp(Zi)
∂Zi
∂Pj

= exp(Pj)exp(Zj) for any j (20)

−
5∑
i=1

exp(Pi)exp(Zi)
∂Zi
∂M

= −exp(M) (21)

Denote ∂2U
∂Zi∂Zj

as Uij, and exp(Pi)exp(Zi) as PZi. We can aggregate all these equations into
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a matrix format as:

A ·



∂Z1

∂P1

∂Z1

∂P2
. . . ∂Z1

∂P5

∂Z1

∂M
∂Z2

∂P1

∂Z2

∂P2
. . . ∂Z2

∂P5

∂Z2

∂M
...

...
. . .

...
...

∂Z5

∂P1

∂Z5

∂P2
. . . ∂Z5

∂P5

∂Z5

∂M
∂λ
∂P1

∂λ
∂P2

. . . ∂λ
∂P5

∂λ
∂M


= B (22)

where

A =



U11 − λPZ1 U12 . . . U15 −PZ1

U21 U22 − λPZ2 . . . U25 −PZ2

...
. . .

...

U51 U52 . . . U55 − λPZ5 −PZ5

−PZ1 −PZ2 . . . −PZ5 0


and

B =



λPZ1 0 . . . 0 0

0 λPZ2 . . . 0 0
...

. . .
...

0 0 . . . λPZ5 0

PZ1 PZ2 . . . PZ5 −exp(M)


Note that ∂Zi

∂Pi
is own-price elasticity, ∂Zi

∂Pj
is cross-price elasticity, and ∂Zi

∂M
is the income elastic-

ity of demand. λ can be calculated as ∂U
∂Z5

/PZ5, according to Equation 15 for i = 5. Solving

for the system of equations yield our elasticity estimates. With the price elasticities with

respect to service demand, and the electricity consumption function, we can also calculate

the overall price elasticity with respect to electricity consumption as following.

εE =
∂f(S)

∂ ln(pE)
=

4∑
i=1

∂f

∂Si

∂Si
∂ ln(pE)

=
4∑
i=1

∂f

∂Si

[ 4∑
j=1

∂Si
∂Pj

∂Pj
∂ ln(pE)

]
=

4∑
i=1

∂f

∂Si

[ 4∑
j=1

∂Si
∂Pj

∂ ln(psj)

∂ ln(pE)

]
=

4∑
i=1

∂f

∂Si

[ 4∑
j=1

∂Si
∂Pj

]
=

4∑
i=1

∂f

∂Si

[ 4∑
j=1

∂Zi
∂Pj

]
We present these billing-cycle level price elasticities for each service, overall price elasticity

for electricity consumption, and the income elasticity for the service demand model using

constrained kernel regression for the electricity consumption function in Figure 12, 13 and

14. We present the same results for the service demand model when using parametric model

with household and weather heterogeneity in Figure 16, 17 and 18. Note that the own-price

elasticities for the two versions of the model are quite close, except for business-end use.
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The median and mean overall price elasticity for both versions of our energy service demand

model is inelastic. The median and mean income elasticities imply that electricity is a

normal (positive elasticity) good and a luxury (elasticity greater than one) good. The income

elasticities of the kernel model show a two-peak pattern. The peak on the left is mainly

urban households while the peak on the right is mainly rural households. This can relate

to the outage factor distribution since we model it differently for urban and rural areas. In

our customer and weather heterogeneity electricity consumption model does not have the

two peaks. One potential reason is that the outage factor is less important in this electricity

consumption function because it does not change the derivative of the electricity consumption

function, while it does change the value of the derivative in the shape-constrained kernel

model.

6.2 Willingness to pay

A major payoff from modeling the demand for electricity services is the ability to calculate

a household’s willingness to pay (WTP) for an additional hour of each electricity service at

their current level of electricity consumption. We utilize the outside good to estimate a rupee

per hour marginal willingness to pay for each electricity service at the customer’s current

demand for these services. The marginal willingness to pay in rupees for an additional hour

of electricity service i during billing cycle tis:

WTPit =
∂U

∂sit
/(
∂U

∂xit
/px)

=
∂U

∂Sit

∂Sit
∂sit

/(
∂U

∂Xit

∂Xit

∂xit
/px)

=
∂U

∂Zit

1

sit
/(
∂U

∂Z5t

1

xitpx
).

(23)

Distributions of the marginal willingness-to-pay across billing cycles and households for each

energy service for the two versions of energy services demand model are plotted in Figures

15 and 19.

A number of conclusions emerge from these figures. First, the mean and median marginal

willingness to pay for an additional hour of appliance and business energy services are signif-

icantly higher than those for lighting and heat and cooling services for both models. Second,

there is considerable heterogeneity in marginal willingness to pay for given energy service

across customers and even within billing cycles for the same customer.
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Tables 10 and 11 illustrate an additional feature of these marginal willingness to pay distri-

butions. For each customer we computed the sample mean across billing cycles of WTPit.

We then computed the fraction of customers that had the highest billing cycle-level mean for

energy service i. For both models, business services had the highest mean marginal willing-

ness to pay for almost 50 percent of the customers. However, each of the other three energy

services had non-trivial fractions of customers with the highest mean marginal willingness to

pay. For the shape-constrained kernel regression model, approximately 34 percent had the

highest mean marginal willingness to pay for heating and cooling services. For the customer

demographic and weather heterogeneity electricity consumption function model, 23 percent

of customers had the highest mean marginal willingness to pay for lighting. The remaining

of Tables 10 and 11 given the percentages of energy services with the second highest, third

highest, and fourth highest mean marginal willingness to pay.

A surprising result from these tables is that for both models the appliance energy service

has, by far, the largest fraction of customers with the fourth highest mean marginal will-

ingness to pay. However, for both models it has the, by far, the highest mean marginal

willingness to pay. This results suggests an important channel for increasing the willingness

of households to pay for a reliable supply of electricity. Consistent with the results in McRae

(2015), households with significant appliance holdings are likely to value a reliable supply of

electricity to be willing to pay for it.

Tables 12 and 13 explore the second moment properties the distribution of the billing cycle-

level means of customer-level marginal willingness to pay for each energy service for the

shape-constrained kernel regression model. Table 12 presents the across-customer covari-

ance matrix of mean marginal willingness to pay for the four energy services. Consistent the

results in Table 10, the variance of mean marginal willingness to pay for appliance services is

by far the largest, followed by the mean marginal willing to pay for business services. Table

13 presents the correlation matrix associated with covariance matrix in Table 12. There is

surprising little correlation across the four services in the marginal willingness to pay.

Tables 14 and 15 present the information in 12 and 13 for the customer and weather het-

erogeneity model. These two tables confirm the two conclusions from the results for the

shape-constrained kernel regression model.

Tables 16 and 17 present the scatter plot of every billing cycle’s service demand, marginal
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utility, and marginal willingness to pay for both models. To maintain a meaningful scale,

we only include observations with service demand ≥ 0.1 for all four service categories. To

have a better view of the 3D plots, we present each scatter plot from 2 angles. Note that

the vertical axis is always marginal willingness to pay. Tables 18 and 19 presents the same

plot but only include observations with service demand ≥ 1. These plots show that cus-

tomers with high marginal willingness to pay usually have low level of service consumption

currently. Thus policies that support household-level investments in electricity consuming

capital goods should target population with low service consumption. They have higher

marginal willingness to pay for services and are currently less likely to have a formal grid

connection. Once they have the capital goods, they have a much higher chance to obtain

formal connection and pay for more stable electricity service.

Results of our household-level marginal willingness pay computation provide strong empirical

evidence in favor of the view that if the customer owns electricity consuming capital goods

that yield high value energy services, customers are more likely to be willing to pay for a

reliable supply of electricity.

7 Conclusion

Our analysis of the customer-level demand for energy services reveals substantial within and

across customer heterogeneity in the marginal willingness to pay for different energy ser-

vices. Although basic lightening and heat and cooling services are often cited as reasons for

increasing electrification in developing countries, our empirical results suggest that modern

household appliances and business uses of electricity are the major drivers of a high willing-

ness to pay for electricity.

Consequently, policies which support household-level investments in electricity consuming

capital goods that provide appliance services and business services combined with policies

to increase the reliability of the supply of electricity for those households could significantly

increase the fraction of households that pay for the electricity they consume.
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A Appendix for Category of Energy Services

Category of energy services Appliances Standard Appliance Wattage

Heating or Cooling Air cooler 200 W
Air conditioner 2000 W
Room heater 2000 W
Warm air blower 2000 W
Ceiling fan 80 W
Table fan 80 W
Immersion rod 1000 W
Geyser 2000 W

Lighting Cfl/leds 20 W
Bulbs 100 W
Tube lights 40 W

Domestic end-use appliances Television 200 W
Refrigerator 60 W
Water purifier 60 W
Microwave 800 W
Electric iron 1000 W
Sewing machine 100 W
Water pump 740 W
Washing machine 700 W
Others: Flour grinder, juicer, 200 W
milk churner, mixer

Business end-use appliances Cell phone charging 6 W
Desktop computer 200 W
Laptop computer 65 W

Notes: Standard wattage information of common household appliances from Bureau of
Energy Efficiency standards for 2012-13 and online load calculators provided by Tamil
Nadu Generation and Distribution Corporation (https://www.tangedco.gov.in/load_
calculato.html) and Paschim Gujarat Vij Company Limited (http://www.pgvcl.com/
consumer/CONSUMER/calculate_n.php)

B Data Appendix

(1) An example illustrating the backing out applicable energy price of electricity
based on observed consumption

Consider for example, a billing cycle for a customer starting on 1st June to 1st August
2015, with a total bi-monthly consumption of 310 kWhs and total energy cost of Rs. 1,497.
Given 310 kWhs consumed over two months, we expect this consumer to fall in the fourth
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consumption tier (corresponding to 150 to 300 kWhs of monthly consumption tier in the
tariff schedule). Based on the prevailing electricity prices at the time, the total energy cost
for the customer for this cycle is calculated as: Rs. 3.50 per kWh for first the 100 kWhs
of consumption (i.e., the first tier of the tariff schedule) + Rs. 5.45 per kWh for the next
200 kWhs of consumption (i.e., the second tier) + Rs. 5.7 for the remaining 10 kWhs of
consumption (i.e., the third tier). The total energy cost based on this calculation is the same
as that appears in the dataset (i.e., Rs. 1,497). For such bills, we attribute the Rs. 5.7 per
unit figure (i.e., the energy charge of the consumption tier on which the household lies on)
as the marginal price for this customer-billing cycle. Additional duties, surcharges and cess,
levied on per-unit of consumption are then added to this marginal price to arrive at the gross
final marginal price faced by the customer in this cycle.

Comparing the per-kWh energy cost derived from the billing dataset to per-unit prices
prescribed in tariff schedule is straightforward, except for the months during which tariff
revisions occur. If new tariff schedules are issued mid-cycle, JVVNL prorates the total
consumption by the number of days of the billing cycle that falls under each of the tariff
schedules. For instance, tariff revisions occurred on 1st September 2016. Consider a billing
cycle, starting 1st August to 1st October, 2016. To calculate the energy charges, first, the
total consumption over the billing cycle is divided into two, weighted by the fraction of days
in the cycle that falls under each tariff schedule (1st Aug – 1st Sept = 31 days and 1st Sept
– 1st October = 30 days). The total energy charge is then calculated by applying the energy
charges prescribed under each tariff schedule and on basis of the prorated consumption. The
marginal price of consumption for each half of consumption is then calculated using the
same formulas as noted in the text above. In such cases of mid-cycle tariff revisions, we have
split the cycle into two, starting 1st Aug to 1st Sept and 1st Sept to 1st October, prorating
consumption, fixed costs, total electricity prices, etc. for each of the two cycles.

(2) Additional validation checks conducted on the administrative billing data

We validate if the household consumption, in general, reacts inversely to changes in prices.
Figure 5 illustrates the changes in the density of consumption and energy prices for periods
between the first and second price revisions (September-2016 to March-2017 and February-
2015 to September-2016 respectively). The figure indicates a sharper increase in prices for
consumers at top-most tiers. This higher increase in prices also appears to be correlated
with a leftward movement along the consumption distribution. Between September 2016
and March 2017, the fraction of bills in the 0-50 kWhs above poverty line (APL) category
increased by more than 10 percentage points while price increased by Rs. 0.4. Price increase
for greater than 500 kWhs of consumption category was about double that amount and was
associated with fall of about 3 percentage points in the fraction of bills. More generally,
the share of household-bills in the top three consumption tiers (for which prices have risen
the most) has fallen, while it has increased in the bottom two tiers (for which prices rose
moderately).

The shift in the density of consumption could also be due to selection, wherein, large num-
bers of newly connected households with low initial levels of consumption could have added
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mass to the left of the distribution during September 2016 to March 2017. However, we do
not find evidence of selection in the data–only 1 percent of sample comprises of consumers-
bills that were newly added to the dataset during this period, insignificant enough to have
moved the distribution so sharply to the left. To be sure, we exclude these households from
the dataset to find the leftward shift in consumption to persist. We interpret this result to
be the first indication that consumers in our sample show a negative response to rising prices.

The consumption data for a given household in our sample also appears to be stable over
consecutive billing periods. Figure 6 compares the consumption tier of a household in the
previous cycle (in the horizontal axes) to the consumption tier in the current cycle (in boxes).
Households below the poverty line have low demand for energy services and therefore may
not transition to higher consumption tiers. The opposite is true for some consumers in the
higher tiers. A large proportion of both groups therefore are observed to reside within their
own tier over consecutive billing cycles. For others, transitions to one-tier above or below
their current consumption tier is more likely. Transitions to more than two tiers away over
consecutive cycles, reassuringly, appears to be rare in the data.
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Tables

Table 1: The distribution of various charges in the dataset

Mean 10th percentile 90th percentile

monthly consumption 166.3 kWh 24.7 kWh 374.5 kWh
monthly consumption per capita 39.7 kWh 4.4 kWh 87.6 kWh
energy charges |1729 |181 |4086
fixed charges |348 |180 |480
electricity duty |138 |20 |310
tariff subsidy |-15.1 |-66.3 |0

Notes: Total number of observations in the sample are 7,615. The distribution was weighted
by sampling probabilities.

Table 2: Comparing the consumption distribution of sampled households to billing
dataset

Percentiles Admin billing data (all HH) Admin billing data (surveyed HH)

1% 1 1
5% 15 14
10% 30 28
25% 62 58
50% 115 119
75% 240 263
90% 452 436
95% 645 562
99% 1283 762

Mean Value 208 189

Notes: This table compares the distribution of consumption for all households in the two dis-
trict of Rajasthan in the administrative data to the consumption distribution obtained from
the survey using sampling probabilities. The sample period for both datasets is restricted
to January and February 2017.
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Table 3: Socioeconomic profile of the households

Variable Proportion of households

Proportion of general caste 29%
Pukka Wall 97.1%
Pukka Roof 99%
Pukka Floor 44.4%
Tap water connection 63.4%
Top Income Source: Farming 15.8%
Top Income Source: Livestock 3.4%
Top Income Source: Own Business 19.5%
Top Income Source: Casual Labour 23.2%
Top Income Source: Salaried Work 36.2%
Top Income Source: Remittances 2.8%
Living in a tented house 5.5%
Ownership of Below Poverty Line Card 18.2%
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Table 4: Parameter Estimate for Outage Factor Distribution

Parameter Rural S.E. for Rural Urban S.E. for Urban

βconstant
p -1.144 0.083 -3.285 0.124
βtemperature
p 0.028 0.043
βprecipitation
p 0.077 0.106
βelectricity consumption
p -0.093 0.046
βhousehold size
p 0.019 0.034
βage
p 0.006 0.010
βnumber of rooms
p 0.164 0.090
βyear of schooling
p 0.014 0.020
βconstant
a1

2.449 0.067 1.559 0.371
βtemperature
a1

0.085 0.039 0.416 0.024
βprecipitation
a1

-0.836 0.625 4.647 0.160
βelectricity consumption
a1

0.007 0.070 0.526 0.132
βhousehold size
a1

0.052 0.079
βage
a1

0.041 0.013
βnumber of rooms
a1

0.030 0.103
βyear of schooling
a1

0.035 0.038
βconstant
b1

1.084 0.046 0.327 0.279
βtemperature
b1

0.070 0.051 0.247 0.017

βprecipitation
b1

-0.706 0.653 4.221 0.154

βelectricity consumption
b1

-0.018 0.053 0.105 0.138
βhousehold size
b1

0.070 0.075
βage
b1

0.042 0.013
βnumber of rooms
b1

0.058 0.100

βyear of schooling
b1

0.068 0.032
βconstant
a2

4.757 0.068 3.809 0.069
βtemperature
a2

-0.035 0.020 -0.057 0.019
βprecipitation
a2

-0.156 0.307 0.161 0.137
βelectricity consumption
a2

-0.010 0.045 -0.013 0.013
βhousehold size
a2

0.015 0.024
βage
a2

0.020 0.004
βnumber of rooms
a2

-0.040 0.058
βyear of schooling
a2

0.023 0.009
βconstant
b2

5.630 0.069 0.130 0.065
βtemperature
b2

-0.032 0.019 -0.044 0.016

βprecipitation
b2

-0.186 0.300 0.054 0.057

βelectricity consumption
b2

-0.012 0.046 -0.003 0.011
βhousehold size
b2

-0.007 0.022
βage
b2

0.009 0.004
βnumber of rooms
b2

-0.005 0.041

βyear of schooling
b2

0.026 0.007
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Table 5: Parameter Estimate for electricity consumption function
Using Specified Functional Form

Parameter Estimate Standard Error

γconstantlighting 1.457 0.075
γincome
lighting 0.239 0.030
γhousehold size
lighting -0.093 0.014

γtemperature
lighting 0.003 0.003

γurbanlighting 0.120 0.016
γconstantdomestic -1.202 0.119
γincome
domestic -2.344 0.207
γhousehold size
domestic -2.511 0.231
γtemperature
domestic -1.585 0.175
γurbandomestic -0.774 0.090
γconstantbusiness -0.798 0.115
γincome
business -5.322 0.342
γhousehold size
business -0.715 0.143
γtemperature
business -2.427 0.280
γurbanbusiness -4.375 0.432
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Table 6: Coefficients for the demand model, with constrained kernel regression for the elec-
tricity consumption function

Dependent variables

hc l a b x

Intercept -3.8608 -3.3067 -7.8208 -4.4773 0
(0.1514) (0.1483) (0.6653) (0.1611) (NA)

log(daily income) -0.0596 0 0 -0.1029 0.8376
(0.1873) (NA) (NA) (0.2115) (0.1936)

log(household size) 0 0 0 -0.1149 0
(NA) (NA) (NA) (0.1132) (NA)

log(mean temp) 0 1.2537 0 1.1809 -0.8223
(NA) (0.4006) (NA) (0.4745) (0.2859)

urban 0 0.0896 0 0 -1.3631
(NA) (0.8874) (NA) (NA) (0.8584)

urban x log(daily income) 0.1989 0.1449 -0.0369 0.1501 0.2253
(0.1148) (0.1198) (0.4245) (0.1023) (0.1571)

Notes: J Statistic = 50.0116, J test p-value = 0.1113, #Obs = 611, ObjValue = 0.08185

Table 7: Symmetric Gamma Matrix, with constrained kernel regression for the electricity
consumption function

hc l a b x

hc -0.005452
(0.0015)

l 0.002343 -0.003084
(0.0022) (0.0044)

a -0.000101 0.000423 -0.000484
(2e-04) (0.0012) (9e-04)

b 0.000641 0.001214 0.000103 -0.001563
(9e-04) (0.0019) (8e-04) (0.0021)

x -0.000363 -0.000722 0.000163 0.000572 -0.000579
(0.0028) (0.0029) (2e-04) (0.0017) (0.0148)

36



Table 8: Coefficients for the demand model, with specified model for the electricity con-
sumption function

Dependent variables

hc l a b x

Intercept -4.7089 -3.2772 -5.5559 -5.6471 0
(0.2754) (0.5625) (0.6427) (0.4787) (NA)

log(daily income) 0.489 1.1948 0.3917 -0.474 1.3351
(0.7742) (0.9696) (1.7923) (0.4711) (0.5092)

log(household size) 0.2265 0.0624 -1.6921 0.1018 -0.0067
(0.412) (0.4457) (0.5221) (0.6482) (0.3855)

log(mean temp) 2.209 2.3838 1.5948 0.1252 0.1882
(0.7674) (0.7622) (1.0671) (1.2622) (0.5416)

urban 3.8203 6.6864 5.6927 3.5463 1.4348
(4.6854) (7.6309) (11.326) (2.0431) (3.1821)

urban x log(daily income) -0.3496 -0.7713 -0.8143 -0.6731 -0.1735
(0.7578) (0.9717) (1.67) (0.5282) (0.5428)

Note: J Statistic = 36.9708, J test p-value = 0.1195, #Obs = 611, ObjValue = 0.06051

Table 9: Symmetric Gamma Matrix, with specified model for the electricity consumption
function

hc l a b x

hc -0.000937
(8e-04)

l 5.3e-05 -0.010303
(0.0019) (0.0094)

a -2.9e-05 0.003391 -0.003847
(0.0011) (0.0056) (0.0048)

b 0.000294 0.004079 0.001856 -0.005556
(0.0014) (0.0085) (0.0044) (0.008)

x 0.001168 0.001667 -0.000733 -0.000811 -0.001864
(0.0012) (0.0051) (0.0018) (0.0012) (0.0204)

37



Table 10: Rank Willingness to Pay for All Services, constrained kernel regression

Heat and Cool Light Appliances Business

Percent of customers with highest mean 34.70% 8.84% 6.55% 49.92%
willingness to pay across billing cycles
Percent of customers with 2nd highest mean 30.93% 35.52% 2.29% 31.26%
willingness to pay across billing cycles
Percent of customers with 3rd highest mean 30.11% 48.61% 4.91% 16.37%
willingness to pay across billing cycles
Percent of customers with 4th highest mean 4.26% 7.04% 86.25% 2.45%
willingness to pay across billing cycles

Table 11: Rank Willingness to Pay for All Services, specified functional form

Heat and Cool Light Appliances Business

Percent of customers with highest mean 13.09% 23.08% 15.88% 47.95%
willingness to pay across billing cycles
Percent of customers with 2nd highest mean 30.44% 37.15% 19.31% 13.09%
willingness to pay across billing cycles
Percent of customers with 3rd highest mean 42.39% 27.33% 19.31% 10.97%
willingness to pay across billing cycles
Percent of customers with 4th highest mean 14.08% 12.44% 45.50% 27.99%
willingness to pay across billing cycles

Table 12: Covariance Matrix for Willingness to Pay for Different Services, constrained kernel
regression

Heat and Cool Light Appliances Business

Heat and Cool 426.93 -0.85 -346.97 -5.09
Light -0.85 3.33 -14.99 18.62
Appliances -346.97 -14.99 1547285.03 -597.43
Business -5.09 18.62 -597.43 3342.77

Table 13: Correlation Matrix for Willingness to Pay for Different Services, constrained kernel
regression

Heat and Cool Light Appliances Business

Heat and Cool 1.000 -0.022 -0.013 -0.004
Light -0.022 1.000 -0.007 0.177
Appliances -0.013 -0.007 1.000 -0.008
Business -0.004 0.177 -0.008 1.000
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Table 14: Covariance Matrix for Willingness to Pay for Different Services, parametric func-
tional form

Heat and Cool Light Appliances Business

Heat and Cool 28.24 0.80 -339.69 -5.94
Light 0.80 6.35 -1132.77 -37.43
Appliances -339.69 -1132.77 61754780.35 -26325.58
Business -5.94 -37.43 -26325.58 29672.59

Table 15: Correlation Matrix for Willingness to Pay for Different Services, parametric func-
tional form

Heat and Cool Light Appliances Business

Heat and Cool 1.000 0.060 -0.008 -0.006
Light 0.060 1.000 -0.057 -0.086
Appliances -0.008 -0.057 1.000 -0.019
Business -0.006 -0.086 -0.019 1.000
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Table 16: 3D Scatter Plot of Marginal Utility, Service Demand, and Marginal Willingness to
Pay, constrained kernel regression, filtered on service demand≥ 0.1 for all service categories

Service View Angle 1 View Angle 2

Heating & Cooling

Lighting

Domestic Use

Business Use
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Table 17: 3D Scatter Plot of Marginal Utility, Service Demand, and Marginal Willingness
to Pay, parametric functional form, filtered on service demand≥ 0.1 for all service categories

Service View Angle 1 View Angle 2

Heating & Cooling

Lighting

Domestic Use

Business Use
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Table 18: 3D Scatter Plot of Marginal Utility, Service Demand, and Marginal Willingness
to Pay, constrained kernel regression, filtered on service demand≥ 1 for all service categories

Service View Angle 1 View Angle 2

Heating & Cooling

Lighting

Domestic Use

Business Use
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Table 19: 3D Scatter Plot of Marginal Utility, Service Demand, and Marginal Willingness
to Pay, parametric functional form, filtered on service demand≥ 1 for all service categories

Service View Angle 1 View Angle 2

Heating & Cooling

Lighting

Domestic Use

Business Use
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Figures

Figure 1: Energy Charges applicable on residential consumers of Rajasthan over the same
period

Notes: Energy and fixed prices obtained from various tariff orders issued by JVVNL
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Figure 2: Consumption distributions from NSS survey and administrative billing data
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Figure 3: Daily consumption distribution by month – red labels indicate months in which
price revisions occurred

Notes: Daily consumption is calculated as the total consumption over the billing cycle divided
by the number of days in the billing cycle. The monthly distribution of daily consumption is
weighted by the sampling probabilities. The labels on the horizontal axis denote the month
of bill issuance. Red diamonds indicate the median daily consumption over the month and
red monthly labels indicate the period at which a revision in tariff schedule occurred.
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Figure 4: Histogram of service demand in terms of hours, for four categories of services
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Figure 5: Changes in the fraction of household bills and energy prices by consumption tiers

Notes: The graph indicates the correlation between changes in the fraction of bills by con-
sumption tiers and the changes in energy prices. These changes are calculated over two
periods: September-2016 to March-2017 and February-2015 to September 2016. The frac-
tion of bills in a period is calculated as the number of bills in a consumption tier divided
by the total number of bills across all tiers in that period. The price changes are calculated
using the energy prices as prescribed in tariff schedules. The six consumption tiers indicated
in the graph respectively correspond to 0-50 kWhs (BPL), 0-50 kWhs (APL), 51-150 kWhs,
151-300 kWhs, 301-500 kWhs, and greater than 500 kWhs.
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Figure 6: Consumption transitions across tiers over consecutive billing cycle

Notes: The graph compares the probability of transitioning across consumption tiers over
consecutive billing cycles. The consumption tiers from the previous period (t0) are indicated
in the horizontal axis. The percentage of household-bills is calculated as the total number
of bills that were in consumption tier i in the previous period t0 divided by all household-
bills that are in consumption tier j in current period (t1) (consumption tier j in period t1 is
denoted as “Current tier: X-Y” in the figure). The percentages are weighted by sampling
weights.
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Figure 7: Changes in temperature and precipitation from three year (2014-2017) average
levels

Notes: The vertical axis shows the deviation of daily temperature and rainfall in a region
from the local four-year period (2013-2017) means of temperature and rainfall50



Figure 8: Histogram of household outage factor
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Figure 9: Histogram for outside good at log level
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Figure 10: Histogram of gradients of electricity consumption function using constrained
kernel regression
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Figure 11: Histogram of gradients of electricity consumption function using specified func-
tional form
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Figure 12: Histogram of price elasticity, using constrained kernel regression for electricity
consumption function

Note: To have a reasonable scale, we only present the data from 1st percentile to 99th
percentile.
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Figure 13: Histogram of overall price elasticity, using constrained kernel regression for elec-
tricity consumption function

Note: To have a reasonable scale, we only present the data from 1st percentile to 99th
percentile.
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Figure 14: Histogram of income elasticity, using constrained kernel regression for electricity
consumption function

Note: To have a reasonable scale, we only present the data from 1st percentile to 99th
percentile.
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Figure 15: Histogram of willingness to pay, using constrained kernel regression for electricity
consumption function

Note: To have a reasonable scale, we only present the data from 5th percentile to 95th
percentile.
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Figure 16: Histogram of price elasticity, using specified function form for electricity con-
sumption function

Note: To have a reasonable scale, we only present the data from 1st percentile to 99th
percentile.
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Figure 17: Histogram of overall price elasticity, using specified function form for electricity
consumption function

Note: To have a reasonable scale, we only present the data from 1st percentile to 99th
percentile.
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Figure 18: Histogram of income elasticity, using specified function form for electricity con-
sumption function

Note: To have a reasonable scale, we only present the data from 1st percentile to 99th
percentile.
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Figure 19: Histogram of willingness to pay, using specified function form for electricity
consumption function

Note: To have a reasonable scale, we only present the data from 5st percentile to 95th
percentile.
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