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a b s t r a c t

The negative demand shock due to the COVID-19 lockdown has reduced net demand for

electricity—system demand less amount of energy produced by intermittent renewables,

hydroelectric units, and net imports—that must be served by controllable generation units.

Under normal demand conditions, introducing additional renewable generation capacity

reduces net demand. Consequently, the lockdown can provide insights about electricity mar-

ket performance with a large share of renewables. We find that although the lockdown

reduced average day-ahead prices in Italy by 45%, re-dispatch costs increased by 73%, both

relative to the average of the same magnitude for the same period in previous years. We esti-

mate a deep-learning model using data from 2017 to 2019 and find that predicted re-dispatch

costs during the lockdown period are only 26% higher than the same period in previous years.

We argue that the difference between actual and predicted lockdown period re-dispatch costs

is the result of increased opportunities for suppliers with controllable units to exercise market

power in the re-dispatch market in these persistently low net demand conditions. Our results

imply that without grid investments and other technologies to manage low net demand con-

ditions, an increased share of intermittent renewables is likely to increase the costs of main-

taining a reliable grid.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The response of governments around the world to the COVID-19 pandemic has led to negative demand shocks to almost all

industries, particularly those in the energy sector. Oilprices plummeted and the West Texas Intermediate (WTI) futures contract

for delivery in May 2020 went negative on April 20 reflecting the exhaustion of local oil storage capacity (Borenstein, 2020).

Industrial production has halted, shops and offices were closed, and electrified public transport operated at reduced service, all
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of which reduced the demand for electricity and affected its pattern across time and space.

In this paper, we explore the consequences of the particularly strict lockdown in Italy in the spring of 2020 on the perfor-

mance of the country’s wholesale electricity market. The lockdown significantly reduced the demand for controllable sources of

electricity such as thermal generation units. These units serve net demand—the difference between system demand and supply

of non-controllable sources that include renewables such as wind, solar, non-storable hydro, and net imports.1

Consequently, the negative COVID-19 electricity demand shock translates into a negative net demand shock because the

supply of non-controllable sources were largely unchanged during the lockdown. Therefore, lockdowns and their associated

low net demand realizations can provide insight into the challenges system operators may face as regions increase the share of

intermittent renewables in their electricity supply industries. In this sense, the COVID-19 lockdown provides a unique oppor-

tunity to analyze potential weaknesses in current electricity market designs with a higher share of intermittent renewables

envisioned by the climate policy goals of many countries around the world.2

A back of envelope calculation reveals that the 20% decrease in business-as-usual (BAU) demand caused by the lockdown

in Italy is the equivalent to a 2.3 times higher output from wind and solar energy at pre-COVID-19 demand levels.3 More than

doubling the output from wind and solar may sound overly ambitious, but it is well within the targets for renewable energy

production in many countries around the world.

Intermittent renewables such as wind and solar, are likely to concentrate their production within certain hours of the day,

month, or year, which can significantly exacerbate the re-dispatch cost increase we identify.4 From an environmental perspec-

tive, the first-order effect of additional renewable capacity is that emissions will decrease because generation from thermal

units will be displaced. However, the intermittent nature of many renewable technologies is likely to increase the importance of

a second-order effect that causes a more inefficient operation of remaining thermal generation units because of more start-ups

and faster ramps of these units (see e.g., Graf and Marcantonini, 2017; Kaffine et al., 2020). The cost of additional start-ups and

faster ramps associated with responding to the rapid appearance and disappearance of wind and solar energy can scale rapidly

with the amount of renewable energy.5

A negative demand shock paired with lower input prices to produce electricity should lead to lower electricity prices. In

Fig. 1, Panel (a), we show that average hourly day-ahead market electricity prices were down by 45% during the period of the

lockdown compared to BAU levels. However, in simplified electricity market designs that do not account for intra-zonal trans-

mission constraints and other relevant system security constraints in the day-ahead market that exist in virtually all European

countries and most wholesale markets outside of the United States, a re-dispatch process is necessary to adjust day-ahead mar-

ket schedules to ensure that they do not violate real-time transmission network and other system security constraints (see, e.g.,

Graf et al., 2020a, 2020b, for more details). Particularly in simplified electricity market designs without an effective local mar-

ket power mitigation mechanism in place, this re-dispatch process is likely to become more costly as the share of intermittent

renewable resources increases because a larger share of the available controllable generation capacity is likely to have to be

adjusted in the re-dispatch process to achieve schedules that are compatible with secure operation of the grid.

In Fig. 1, Panel (b), we show average hourly re-dispatch costs per MWh of demand up by 108% relative to the average for the

same time period in previous years, what we call the BAU period.6 While the average BAU period re-dispatch costs per MWh of

demand was about 18% of the average daily day-ahead market price, it increased to 71% of the average daily day-ahead market

price during the lockdown. Furthermore, in the 20% highest re-dispatch cost days during the lockdown, the average re-dispatch

cost per MWh of demand exceeded the average daily day-ahead market price.

The increase in re-dispatch costs during the lockdown has significantly reduced the cost savings to final consumers due to

the day-ahead market price decrease from lower net demand during the lockdown. There are two major explanations for this

result: First, this demand shock created additional opportunities, not available to suppliers outside of the lockdown period, to

profit from the divergence between the network model used to clear the day-ahead market and network constraints necessary

to operate the grid in real-time as discussed in Graf et al. (2020b).7 Second, this persistently low level of net demand is likely to

1 Because renewables have a close to zero variable cost of producing energy, these resources will be almost always operated when the underlying resource

is available. Net-imports are deemed to be firm after the day-ahead market-clearing and are therefore another fixed source of supply for system operators

to deal with in the real-time re-dispatch process. Transmission system operators in Europe do have the ability to change net imports close to real-time but

only in extreme situations to solve real-time security issues. New European platforms for trading balancing resources closer to real-time are currently under

consideration.
2 Because of the intermittency of wind and solar energy production, an increase in wind and solar generation capacity is likely to lead to a more volatile net

demand than the equivalent average net demand reduction due to the lockdown demand reduction.
3 Average hourly demand between March and April over the years 2017–2019 was 31.6 GWh and average hourly generation from wind and solar combined

was 4.9 GWh. A 20% decrease in average demand (0.2 × 31.6 GWh = 6.32 GWh) is equivalent to an increase of hourly generation from wind and solar by factor

2.3 to 11.22 GWh (= 4.9 GWh + 6.32 GWh).
4 For example, California produces more than double the amount of wind and solar energy in the summer months relative to other months of the year.
5 Schill et al. (2017) estimate that the overall number of start-ups would grow by 81% (costs by 119%) for Germany between 2013 and 2030 as the share of

variable renewables is expected to grow from 14% to 34% if no investments in more flexible technologies, including storage, are made.
6 In absolute terms the re-dispatch costs are up by 73% relative to the same time period during previous years. Fig. D1 compares the hourly average re-dispatch

costs per week during the lockdown versus the same time during previous years.
7 In order to ensure a secure operation of the power system, generation units providing ancillary services should be distributed throughout the transmission

network. The probability that the schedules that emerge from the day-ahead market meet this requirement decreases when a lower number of power plants

are dispatched due to a low net demand. Particularly at low net demand levels, these locational requirements create relatively small local markets with a high

concentration of generation ownership, which increases the ability of each market participant to affect outcomes in these local markets.
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Fig. 1. Electricity prices versus Re-dispatch costs.

require additional security constraints to be respected in operating the grid during a larger fraction of hours of the day.

To compute a BAU re-dispatch cost counter-factual that allows us to distinguish between these two determinants of

increased re-dispatch costs, we estimate the relationship between hourly re-dispatch costs using historical data on system

conditions (including net demand) from January 1, 2017 to December 31, 2019. We use a deep-learning neural network model

to predict BAU re-dispatch costs given system conditions during the lockdown period.8

We find that predicted BAU hourly re-dispatch costs given system conditions for the lockdown period are only 26% higher

than our BAU period re-dispatch costs. This counter-factual estimate of the increase in re-dispatch costs is approximately one-

third of the 73% percent increase in the average hourly re-dispatch costs during the lockdown period relative to our BAU period

re-dispatch costs. These two results suggest that there are likely to be new offer strategies that suppliers with controllable

resources in their portfolio can employ to exercise unilateral market power during the persistently low (net) demand hours that

occurred during the lockdown.9 However, we also recognize that some of this re-dispatch cost increase could have been driven

by an increased number of operating constraints that must be respected during these persistent low-net demand conditions.

The result that a model estimated using data from 2017 to 2019 predicts re-dispatch costs during the lockdown period that

are a fraction of re-dispatch costs during the lockdown is robust to a variety of different model specifications, including one

that attempts to account for dynamic ramping constraints throughout the day faced by controllable thermal resources. We also

use our BAU model to estimate how an increase in the amount of renewable energy would affect re-dispatch costs without the

lockdown demand reduction. We find that doubling the output from renewable resources would increase re-dispatch costs by

37% during the pre-lockdown period of January 1, 2017 to March 7, 2020. This result reinforces our conclusion that re-dispatch

costs are likely to increase significantly as a result of an increasing share of intermittent renewables at current demand levels.

Although the market response to an unexpected persistent net demand reduction caused by the COVID-19 lockdown is

likely to be different from a more gradual net demand reduction caused by increased investments in wind and solar resources,

8 Lago et al. (2018) find that deep-learning approaches outperform traditional regression based time-series forecasting methods to predict hourly electricity

prices. Within the class of deep-learning models, they find that a deep neural network with two layers outperformed other deep-learning models in terms of

prediction accuracy. Benatia (2020) also deploy machine learning methods to study the effect of the pandemic on the French electricity market focusing mainly

on day-ahead market performance and consequences of the price drop for market participants.
9 Note that the predictive model estimated over previous years embodies the ability of suppliers to exercise unilateral market power during the periodic low

net demand levels that occur on weekends and holidays during this time period. Moreover, this time period also contains a number of low net demand periods

of a similar magnitude to those to that occurred during the lockdown period.
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our results demonstrate that without investments in transmission expansions and other technologies for managing low net

demands as well as an effective local market power mitigation mechanism, the levels of re-dispatch costs could rise rapidly. At

these low net demand levels many system stability constraints bind which can create new opportunities for suppliers providing

these services to increase the prices they are paid.

These results also underscore the need for regions with ambitious wind and solar energy goals to adopt wholesale market

designs that more closely match the economic model used to set prices and generation output levels to the way the transmis-

sion network is actually operated.10 Our results demonstrate that the opportunities for suppliers to profit from the difference

between the model used to operate the electricity market and how the grid is actually operated scales rapidly as the average

level of net demand falls.

The remainder of the paper is organized as follows. In Section 2, we describe the key features of structure and operation of

Italian electricity supply industry necessary to understand our analysis. In Section 3, we show how the lockdown demand shock

has affected market outcomes in the Italian electricity market. In Section 4, we detail our approach to estimating the pre-COVID-

19 relationship between system conditions and re-dispatch costs that we subsequently use to predict counterfactual lockdown

re-dispatch costs. In Section 5, we present our results and investigate their robustness under alternative modeling assumptions.

We conclude the paper in Section 6.

2. The operation of the Italian wholesale electricity market

The Italian wholesale electricity market consists of the European day-ahead market followed by a series of domestic intra-

day market sessions, and finally, the real-time re-dispatch market. The day-ahead market does not procure ancillary services,

only energy. In the intra-day market sessions, participants have the option to update the generation and demand schedules that

emerge from the day-ahead market or a previous intra-day market session. The day-ahead market as well as all of the intra-day

markets are zonal-pricing markets that ignore transmission network constraints within the zone and other relevant generation

unit operating constraints in setting prices and generation unit output levels.11

Shortly after the day-ahead market clears, two out of the seven intra-day market sessions are run, still one day in advance

of actual system operation. After the clearing of the second intra-day market, the first session of the re-dispatch market takes

place. Five other re-dispatch sessions will be run, one after each intra-day market session as well as a real-time balancing market

session that clears every 15 min.

In the real-time re-dispatch market, the objective is to balance any net demand forecast errors but also to transform the

schedules resulting from the zonal day-ahead and intra-day market-clearing processes into final schedules that allow secure grid

operation in real-time by minimizing the combined as-offered and as-bid cost to change generation schedules. Generation units

that are needed to produce more output are paid as-offered to supply this energy and generation units that are unable to produce

as much energy because of a real-time operating constraint sell this energy as-bid. The solution to this optimization problem

accounts for a nodal network model, the possibility that equipment can fail, errors in forecasts of demand or non-controllable

generation, and ensures that technical parameters such as frequency levels or voltage levels are within their security ranges.

An offer to start-up a unit or to change a unit’s configuration can be submitted to the real-time re-dispatch market as well as

price/quantity pairs to increase and decrease a unit’s schedule. The re-dispatch market is operated by the Italian transmission

system operator (Terna). Between 2017 and 2019 the average annual upward real-time re-dispatch volume was 16 TWh and

downward real-time re-dispatch volume was 19 TWh. More details on the market design can be found in Graf et al. (2020a,

2020b).

Graf et al. (2020b) find that market participants factor in the expected revenues they can earn from being accepted in the re-

dispatch market when they formulate their offers into the day-ahead market. Suppliers recognize that the real-time operating

levels of all generation units must respect all network and generation unit-level operating constraints, whether or not these

constraints are accounted for in the day-ahead or the intra-day market-clearing engine. Differences between the constraints

on generation unit behavior that must be respected in the day-ahead and intra-day markets and the additional constraints that

must be respected in the real-time operation of the transmission network are what create the opportunities for suppliers to play

what has come to be called the “INC/DEC Game.”

Ignoring the forecast error in locational net demand profiles between day-ahead and real-time, demand for re-dispatch

energy from a generation unit upward or downward arises if a unit’s day-ahead market schedule is not compatible with secure

operation of the grid in real-time. The “INC/DEC Game” relies on the fact that the demand for re-dispatch from a generation

unit is endogenously determined by the owner’s day-ahead market offer and the day-ahead market offers of other market

participants. A high offer price in the day-ahead market can cause a unit, required to supply energy in real-time, to fail to

sell energy in the day-ahead market. A low offer price in the day-ahead market can cause a unit that cannot supply energy in

real-time to sell energy in the day-ahead market.

This logic implies that a generation unit owner that is confident its unit is required to run in real-time may offer this unit in

the day-ahead market at extremely high price. The unit would either be taken in the day-ahead market at this price or not taken

10 See Graf et al. (2020b) for an example of market participant behavior that can arise from a market design that does not match the economic model used to

set prices and output levels to the way the system is actually operated.
11 Currently, the day-ahead market and intra-day markets consist of seven bidding zones (see Tables A1 and A.2 for more details).
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Table 1

Actual and projected solar and wind capacity.

Year Solar Wind

Panel A: Actual

2012 16.78 8.06

2013 18.19 8.50

2014 18.59 8.67

2015 18.89 9.20

2016 19.30 9.42

2017 19.68 9.78

2018 20.12 10.31

2019 20.90 10.76

2020 21.20 10.81

Panel B: Projections

2025a 26.59 15.42

2030a 50.00 17.52

2030b 30.48 13.61

2030c 49.33 18.89

2040b 47.48 17.61

2040c 69.83 25.38

Notes: Capacity values in GW. Only solar photovoltaics and onshore wind consid-

ered. Actual capacity values publicly available from https://www.terna.it/en/electric-

system/dispatching/renewable-sources and projected values from https://download.terna.

it/terna/Dati%20generazione%20PdS_V3_2020_exact_8d7f5cdeb456feb.xlsx.
a Piano Nazionale Integrato per l’Energia e il Clima (National integrated Energy and Climate

Plan).
b Business-as-usual projection.
c Strong growth in distributed generation projection (Decentralized generation scenario).

in the day-ahead market but subsequently taken in the re-dispatch market at this offer price or an even higher offer price. The

more confident the unit owner is that its unit will be needed to supply energy in real-time regardless of its offer price in the

re-dispatch market, the higher the offer price the unit owner can submit into the day-ahead market.

Similar logic applies to the case of suppliers that are confident that their generation units cannot supply energy in real-time

because of a transmission network or other operating constraint. In this case, the unit owner would submit a very low offer

price into the day-ahead market to ensure that it sells energy at the market-clearing zonal price. The more confident the unit

owner is that this energy cannot be supplied in real-time, the lower is the offer price submitted into the day-ahead market. In

the re-dispatch market this unit owner will then buy back this energy at a bid price that is lower than the market-clearing zonal

price and earn the difference between the day-ahead zonal price and this bid price times the amount of energy it is unable to

supply.

In regions that employ zonal day-ahead and intra-day markets and operate a pay-as offered and buy as-bid re-dispatch

process, the opportunities for controllable generation units to profit from the predictability of net demand conditions that

make their units necessary to operate or not operate are likely to increase as the amount intermittent renewable generation

increases.12 In Table 1, Panel A, we detail the actual installed capacity of wind and solar between 2012 and 2020 in the Italian

market. Installed capacity of solar steadily increased from 17 GW to 21 GW and wind from 8 GW to 11 GW. In Panel B, we

show several projections for the years 2025, 2030, and 2040. Notably, solar capacity is projected to more than double in two out

of three scenarios for 2030. Wind capacity is also projected to increase by more than 60% by 2030 according to the same two

scenarios.

3. Negative lockdown demand shock and its effects

Large regions around Lombardy in Northern Italy—the economic and industrial powerhouse of the country—shut down on

March 8, 2020 and the country-wide lockdown followed suit on March 10, 2020. In the days that followed, the lockdown became

even more stringent by narrowing the definition of what an essential business is. The strict lockdown was eased on April 26,

2020.

In Fig. 2, we show how the lockdown of effectively all non-essential businesses in a response to the COVID-19 outbreak

drastically reduced the national demand for electricity. In Panel (a), we compare the BAU average weekly demand profile, that

we define as the hourly average demand in March and April during the years 2017 through 2019 for each hour of the week,

to the demand profile during the seven weeks of lockdown (March 9, 2020 until April 26, 2020),13 where the first hour of

12 Investments in resources that provide flexibility, such as storage, demand response, and transmission network upgrades can reduce the frequency that these

opportunities arise.
13 We define the lockdown period throughout the paper to range between Sunday, March 8, 2020 and Sunday, April 26, 2020. However, for the graphs showing

weekly averages, we decided to skip hourly observations from Sunday, March 8, 2020, to obtain the same number of observations for each week.
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Fig. 2. Demand-shock due to lockdown in response to COVID-19 pandemic.

the week is the hour beginning Monday at 00:00 a.m. The figure demonstrates that the average hourly demand is lower in all

hours of the week during the lockdown period. In Panel (b), we show how the daily average of demand has changed relative

to the daily average demand for each day-of-week between January and April over the years 2017 through 2019. Average daily

demand for the lockdown period is 20% less than the average daily demand during same time period in 2017 through 2019. An

increasing number of electricity markets have a considerable share of non-controllable supply. Non-controllable supply includes

generation from renewables, such as wind, solar, or hydro. In Europe, net-imports made through either long-term allocation

processes or the joint European day-ahead market-clearing are non-controllable in real time except for emergency situations.

Higher net imports and more output from non-controllable units will reduce the demand that will be served by controllable

generation units.

We define the hourly net demand (ND) for controllable generation units for each bidding zone z as follows

NDz = Dz − RESz − Hydroz − Impz, (1)

whereas D is system demand, RES the supply from intermittent renewable sources such as wind or solar, Hydro is non-

dispatchable hydro production, such as generation from run-of-river plants, and Imp is net imports from foreign countries.

We use the same logic to create day-ahead net demand forecast (NDFC) variables by replacing D and RES with their day-ahead

forecasts. Note that non-controllable hydro schedules as well as net imports from foreign countries are firm after the day-ahead

market-clearing.

Fig. D2 shows hourly net demand boxplots for the BAU period and the lockdown periods. BAU period net demands are from

hours in March to April for the years 2017 through 2019. Lockdown net demands are for hours between 2020-03-08 and 2020-

04-26. Boxes represent the interquartile range (IQR) and the upper and lower vertical bars are the 1 percentile and 99 percentile

for that hour of the day. Diamonds represent outliers not included in the 1 to 99 percentile range. The average hourly lockdown

period net demand was 21% lower than the BAU period average hourly net demand.

Panel (a) of Fig. 3 plots the net demand duration curve for the years 2017 through 2019. Panel (b) plots the net demand

duration curve for the lockdown period from 2020-03-08 to 2020-04-26. Although the range of net demands from 2017 to 2019

is larger than the range of net demands during the lockdown period, the range of net demand from 2017 to 2019 contains the

range of net demands during the lockdown period. The shape of the net demand duration curve in panel (a) is similar to the

shape of the net demand duration curve in panel (b). The major difference between the two curves is that much more probability

mass is concentrated in a much smaller range of low demand levels during the lockdown period.

In Fig. 1, Panel (a), we show how the negative demand shock affected day-ahead electricity prices compared to BAU. As

expected, a negative demand shock paired with lower input prices to produce electricity led to lower electricity prices. Average

lockdown period hourly day-ahead market prices were down by 45% compared to average BAU period hourly day-ahead market

prices. Although these lower day-ahead market prices are good news for the final consumer, in simplified European electricity

6
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Fig. 3. National net demand duration curves.

market designs where system security constraints are only accounted for in the real-time re-dispatch market, the final consumer

also pays the cost of re-dispatching generation units to achieve physically feasible generation output levels to meet real-time

demand at all locations in the transmission network.

In Fig. 1, Panel (b), we show average hourly re-dispatch costs per MWh of demand during the lockdown and BAU period

applying the same definition for BAU as above.14 We find that average hourly re-dispatch costs per MWh of demand increased

by 108% during the lockdown compared to the BAU period. For some weeks during the lockdown, the average re-dispatch cost

per MWh of demand was almost as high as the day-ahead market price. The sharp increase in the re-dispatch costs drastically

reduces the electricity cost savings for the final consumers due to the reduced electricity demand during the lockdown.

4. Estimating BAU period re-dispatch cost

In this section, we estimate a model that predicts BAU period re-dispatch costs using data on system conditions. This model

is then used to predict re-dispatch costs during the lockdown period. Because this model is estimated using data from 2017 to

2019, the lockdown period predictions from this model cannot capture changes in offer behavior or system security require-

ments caused by the persistent low net demand levels that occurred during the lockdown period. This model can only use the

hourly relationship between system conditions and re-dispatch costs during weekends and holidays during the BAU period to

predict re-dispatch costs for comparable low net demand periods during the lockdown period.15

The main factors used to predict re-dispatch costs are zonal net demands—the demand within each zone that must to be

served by controllable generation units. We also include the day-ahead forecast of zonal net demands. It is important to include

actual and forecast zonal net demands because the re-dispatch quantities for each generation unit is the difference between its

real-time output and its day-ahead market schedule. For example if demand was underestimated day-ahead, the demand for

re-dispatch will be higher because of the forecast error while it will be lower or even negative for an overestimation of day-

ahead demand. However, the uncertain forecast error is not the only reason for a (locational) demand for re-dispatch. System

operation constraints such as voltage regulation, reserve requirements or nodal network constraints also drive the demand for

re-dispatch actions. We include zonal net demand levels because the spatial distribution of net demand reveals (i) inter-zonal

power flows16 and (ii) are useful predictors for whether system constraints will bind. We also include the day-ahead market

14 Hourly real-time re-dispatch costs are computed as the sum of the awarded incremental real-time re-dispatch quantities valued at their as-offered costs net

of the sum of the awarded decremental real-time re-dispatch quantities valued at their as as-bid costs. As-offered costs to start-up a unit or to change a unit’s

configuration are neglected.
15 In fact, the lowest level of net demand found in our sample was observed in a pre-covid hour, i.e., on a Sunday afternoon in June (2019-06-02, 2 p.m. to 3

p.m.).
16 Across-zone power flows are implicitly defined by zonal balances in a radial network and the current Italian network configuration supports this assump-

tion to a large extent. The zonal net demands result in so-called base-flows and the market power that includes the power to congest a network by market

participants with controllable units in their portfolio will affect the final flows through their offer behavior (see, e.g., Graf and Wolak, 2020, for more details on

unilateral market power that includes congestion power in locational markets).
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price to control for the variable cost of the marginal generation unit. We include a workday indicator variable that is equal to one

for days that are not weekend days nor holidays. Finally, we include an indicator for the months December to April because the

thermal capacity of overhead transmission lines is higher during these months because of lower ambient temperatures levels.

Note that our goal is to predict hourly BAU re-dispatch costs for the current day given current system conditions and not to

predict re-dispatch costs for a day in the future. Therefore, we believe it is legitimate to use data from the previous day and

current day for this purpose.

We compiled data on the variables described above for the time period 2017-01-01 to 2020-04-26. A more detailed descrip-

tion of the variables and their sources can be found in Table A1. Descriptive statistics of relevant variables are presented in

Table A2.

Instead of using regression based models, we use a deep neural network model with two hidden layers.17 Linear regression

models are appealing for constructing counterfactual predictions because they can be fit efficiently using closed form solutions

that requires only matrix inversion to derive parameter estimates 𝛽 = (X′X)−1X′y, with X being the matrix of explanatory vari-

ables and y the dependent variable with yt the tth element of y and X′
t

the tth row of X. However, obtaining a flexible model

to predict out-of-sample values of yt may require expanding the set regressors to include polynomials in the elements of Xt .

Increasing the number of elements in the vector of regressors is likely to increase the variance of our out-of-sample predictions

of yt because a number of the true values of these coefficients are likely to be zero, although exactly which ones are is unknown.

The benefit of a deep neural network is its ability to flexibly approximate the conditional mean of yt given Xt using nonlinear

functions of the elements of Xt .
18 This ability may be very relevant in our context given the complex relationship between

re-dispatch costs and input variables. Consequently, if the researcher is willing to tolerate some bias in the estimation of the

conditional expectation of yt given Xt , an out-of-sample prediction of ys given Xs that has smaller expected mean-squared

error prediction is possible. A deep neural network assumes 𝔼(yt|Xt) = f (Xt;𝛽). The parameter vector 𝛽—called weights in the

machine learning jargon—of this nonlinear function is chosen to minimize the in-sample mean-squared prediction error as

well as accounting for the possibility of within-sample over-fitting. In a two hidden layer neural network three functions are

connected in a chain to form f(x) = f (3)( f (2)( f (1)(x))), with f (1) being the first hidden layer, f (2) the second hidden layer, and f (3)

being the last layer, called the output layer. The learning algorithm’s objective is to optimally use the layers to best approximate

𝔼(yt|Xt). We refer to Chapter 6 in Goodfellow et al. (2016), or Chapter 11 in Hastie et al. (2009) for more details. The cost of

this deep neural network approach is that many model parameters have to be estimated in an iterative process using numerical

optimization methods, often with objective function penalties on certain tuning parameters. We detail the model’s configuration

and our strategies to circumvent known potential shortcomings such as model uncertainty or over-fitting in Appendix C.

A major concern of all machine learning models is over-fitting. We address this issue by using the method of cross-validation

for model selection. The basic idea of this method is to split the in-sample data ranging from January 1, 2017 to December 31,

2019 into a training sample and a validation sample. The parameters are estimated on the training sample and the validation

sample is used to monitor out-of-training-sample performance (the mean squared error, i.e., the average squared difference

between the estimated re-dispatch cost and the actual re-dispatch cost) and to set the values of various tuning parameters in

estimation samples. The performance on the validation set is used as a proxy for the generalization error and model selection

is carried out using this measure (see the discussion in Rasmussen and Williams, 2006). We use a random 70:30 split, i.e., 70%

of the data will be used for training the model and 30% for validating the model. This approach will make the trained weights

(parameter estimates) more generally applicable rather than being too strongly tailored to the estimation or training data. We

also set aside a considerable part of the overall data that is not presented to the algorithm for training or for validation (see

Appendix B for more details). We divide this out-of-sample data into “pre-lockdown”-data ranging from January 1, 2020 to

March 7, 2020 and “lockdown”-data ranging from March 8, 2020 to April 26, 2020 (see Fig. B1 for a graphical summary of the

design).

5. Results

In Fig. 4, we present the out-of-sample prediction error for the pre-lockdown period (2020-01-01 to 2020-03-07) and the

lockdown period (2020-03-08 to 2020-04-26). The prediction error is defined as the difference between predicted BAU re-

dispatch cost from our neural network model and actual re-dispatch cost. Hence a negative prediction error means that we

have underestimated the actual re-dispatch cost. The average hourly prediction error during the BAU period is about −2,000

EUR (a 1% percentage error relative to the average predicted BAU re-dispatch cost) while the average prediction error during

lockdown period is orders of magnitude larger at −107,000 EUR (a 37% percentage error relative to the average predicted BAU

re-dispatch cost. Furthermore, the prediction error distribution during the lockdown period is more negatively skewed than the

prediction error distribution during the BAU period. A Wilcoxon Signed Rank test comparing the distributions of predicted versus

actual re-dispatch costs for the BAU period finds that these distributions are not statistically different at the 5% level (p-value:

0.23).19 Applying the same test to the lockdown period yields a p-value that is effectively zero, indicating that the distribution

17 A general introduction to deep learning methods can be found in e.g., Goodfellow et al. (2016) and Hastie et al. (2009).
18 The universal approximation theorem states that a feed-forward network with a single hidden layer containing a finite number of neurons can approximate

arbitrary well real-valued continuous functions (see e.g., Cybenko, 1989; Hornik, 1991).
19 To derive the p-value an asymptotic normal approximation to the null distribution of the test statistic is used.
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Fig. 4. Distribution out-of-sample prediction errors.

of predicted re-dispatch costs during the lockdown period is statistically significantly different from the distribution of actual

re-dispatch costs during this same time period.

In Fig. 5, Panel (a), we compare the daily re-dispatch costs to our predicted BAU re-dispatch costs. We add a prediction error

band around our point estimates to account for the uncertainty in the predictions. More precisely, we add the absolute value of

the 0.025 quantile of the prediction error during the out-of-sample pre-lockdown period to the point estimates of the lockdown

period and subtract the 0.975 quantile from the point estimates. The figure in Panel (a) shows that before the lockdown our

model estimates are well within the prediction bands, whereas that is not the case during the lockdown period. In Panel (b), we

zoom into the lockdown period and compare hourly values of the actual re-dispatch costs and our predicted BAU re-dispatch

costs, showing that realizations in some hours are substantially larger than our predictions.

Overall, we find that the actual average hourly re-dispatch costs during the lockdown were 37% higher than our BAU esti-

mates during the lockdown and our BAU estimates during the lockdown are 26% higher than the average hourly re-dispatch

costs during the same time period in previous years. As noted earlier, the average hourly re-dispatch cost during the lockdown

is 73% higher than the average hourly re-dispatch costs during the same time period in previous years. Therefore, roughly two-

thirds of the increase in re-dispatch costs during the lockdown can be attributed to the persistent low net demand conditions

giving market participants more opportunities to figure out schedule configurations that increase the demand for re-dispatch

actions. Furthermore, a higher demand for operating storage units is created20 and this amplified the exercise of market power,

that cannot be explained by the past relationship between system conditions and re-dispatch costs.21

The 37% increase in actual re-dispatch cost compared to our BAU predictions during the lockdown amounts to 129 million

EUR for the seven weeks of strict lockdown. In a world with a large share of renewables, the reduced net demand situation

would be permanent. Hence, to put things into perspective and extrapolating this amount to an annual level yields an increase

in the re-dispatch cost by almost 1 billion EUR per year. As noted earlier, the negative COVID-19 demand led to a net demand

reduction that is the equivalent of doubling renewable energy production in Italy. Consequently, using these numbers implies

the potential for a roughly 1 billion EUR increase in re-dispatch costs associated with a roughly doubling of renewable energy

production in Italy under the existing market design.

20 Low net demand hours may require dispatching storage units to increase net demand to accommodate system-relevant thermal generation units. The

reservoir balance constraints of storage units make it necessary to also release the stored electricity (in form of water) within a short period of time to have

spare headroom in the reservoirs to increase net demand again in the near future if necessary. Therefore, part of the available storage capacity may have

considerable market power in settings with persistently low net demand because they face little competition in the market for increasing net-demand in

real-time.
21 Although average re-dispatch costs on non-business days before the lockdown are comparable to those on workdays during the lockdown, average hourly

re-dispatch costs were 308,000 EUR for non-business days before the lockdown and 332,000 EUR on workdays during the lockdown. This yields a 8% increase

despite lower fuel costs during the lockdown period. The average hourly re-dispatch cost during lockdown using all hours yields 395,000 EUR. Hence, an increase

of over 25% compared to non-business days in March and April over the years 2017–2019.
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Fig. 5. Out-of-sample predicted re-dispatch cost and actual realizations.

5.1. Robustness checks

In this section, we perform robustness checks of our preferred BAU prediction model. In Section 5.1.1, we compare the

performance of our neural network model to three regression-based models for computing our counterfactual lockdown period

re-dispatch costs and predict lower lockdown period re-dispatch costs than our neural network model. In Section 5.1.2, we

restrict the training and validation samples of our neural network to 2019 data only to exclude the impact of any pre-existing

trends in the share of intermittent renewables and changes in the underlying power system (e.g., grid expansions, changes

in generation units’ operations) in our full 2017 to 2019 sample period. We find even larger counterfactual lockdown period

re-dispatch costs using this prediction model compared to our full training and validation sample model.

In Section 5.1.3, we include dynamic effects—lags of hourly system net demand as well as leads of the hourly system net

demand forecast—in our neural network model to predict re-dispatch costs because the operation of non-controllable genera-

tion units throughout the day typically depends on the actual, historic, and forecast pattern of net demand throughout the day.

These models predict higher counterfactual lockdown period re-dispatch costs than our preferred model, but the difference

between the distribution of predicted re-dispatch costs during the lockdown period from this model and the actual distribution

of re-dispatch costs during the lockdown period is still statistically different. In Section 5.1.4, we use a neural network model

estimated over our 2017 to 2019 period to predict the impact of doubling of actual renewable output during 2017-01-01 to

2020-03-07. We find that predicted re-dispatch costs during this time period are roughly 37% above actual re-dispatch costs

during this time period. This predicted increase in re-dispatch costs (due a doubling of renewable output) relative to actual

re-dispatch costs during the pre-lockdown period is larger than the predicted increase in re-dispatch costs during the lockdown

compared to BAU period re-dispatch costs.

5.1.1. Regression-based models

In Table 2, Panel A, we present the pre-lockdown out-of-sample performance of several regression-based models estimated

over our 2017 to 2019 training and validation sample period. Unlike in the deep-learning framework, we run the linear regres-

sions on the combined training and validation samples. We use the root mean square error (RMSE) metric22 evaluated at pre-

lockdown out-of sample observations and predictions to compare the performance of all our models. Our preferred deep neu-

ral network specification described in Section 5 yields an RMSE of 81,676 EUR for the period 2020-01-01 to 2020-03-07 (the

actual average hourly re-dispatch cost for the same period yields 206,000 EUR). Using the same set of explanatory variables

X =
[

XC XI
]

with XC containing the continuous variables (day-ahead market price, zonal net demands, and zonal day-ahead

net demand forecasts), and XI the indicator variables (workday indicator variable and winter indicator variable), as input in

22 RMSE(y, ŷ) =
√

T−1
∑T

t=1
(yt − ŷt)2.
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Table 2

Model comparison based on pre-lockdown out-of-sample performance.

Polynomials/Interactionsa Lagsb Leadsc RMSEd Actual cost

Predicted BAU cost

e

Panel A: Linear regression model

– – – 103,120 +82%

2nd degree – – 85,904 +55%

2nd and 3rd degree – – 104,505 +80%

Panel B: Deep neural network

– – – 81,676 +37%

– 24 h – 80,863 +17%

– 24 h 24 h 80,363 +11%

a nth degree polynomials and interaction terms of continuous explanatory variables, i.e., zonal

net demands, zonal net demand forecasts, and day-ahead market price.
b Lags of system net demand.
c Leads of system net demand forecast.

d RMSE(y, ŷ) =
√

T−1
∑T

t=1
(yt − ŷt)2.

e Average actual hourly re-dispatch costs during lockdown relative to predicted BAU re-dispatch

costs.

estimating a linear model by ordinary least squares yields an RMSE of 103,120 EUR.

As discussed in Section 4, the advantage of the deep-learning framework is that it specifies a flexible nonlinear function for

𝔼(yt|Xt). A popular approach to account for more flexible functional forms in regression based models is to include polynomial

terms and interaction terms. We therefore include 2nd degree polynomials and interaction terms of the continuous explanatory

variables. This modification of the regression model pushes the pre-lockdown out-of-sample RMSE down to 85,904 EUR—a

drastic improvement that is nonetheless slightly higher than the goodness of fit of our deep neural network model. A tempting

strategy to reduce the pre-lockdown RMSE would be to add higher degree polynomials and interaction terms. However, adding

3rd degree polynomials and interaction terms of the columns of XC to the regression model actually drastically increases the

pre-lockdown out-of-sample RMSE to 104,505 EUR. This is a typical of out-of-sample prediction behavior of an over-fitted linear

regression model which can be mitigated by the use of our preferred neural network approach.

All three regression models summarized in Table 2 yield lower total predicted BAU re-dispatch costs during the lockdown

than our neural network model. Therefore the actual average re-dispatch costs relative to the average predicted BAU re-dispatch

costs during the lockdown are larger (+55% to +80% compared to +37% of our preferred deep neural network model). In that

sense, our preferred deep neural network model leads to a more conservative conclusion on the additional re-dispatch cost

increase during the lockdown compared to the regression based model predictions.

5.1.2. Trend in in-sample data

On an annual basis we find that re-dispatch costs have increased in 2019 to 1.83 billion EUR compared to 1.53 billion in

2017 and 1.57 billion in 2018. A potential explanation could be that the output from wind was higher in 2019; 19.9 TWh

compared to 17.5 TWh in 2017 and 17.3 TWh in 2018. Wind capacity is mainly concentrated in the South of the country where

the transmission network is less extensive, which may explain this difference. To check whether this trend in renewable output

over our 2017 to 2019 training and validation sample period could explain the level of our predicted re-dispatch cost increase

during the lockdown period, we train our model using only data from 2019. More precisely, we adapt the same cross-validation

strategy to circumvent over-fitting as before with the only difference that we perform the random sample split on observations

that occurred in the year 2019. All other choices of how we implemented our preferred specification of the neural network

including hyper-parameter optimization are unchanged and so are the input variables. Instead of a 37% additional increase in

the actual lockdown re-dispatch costs relative to the predicted re-dispatch costs, we find a 43% increase when training our

prediction model on this reduced sample.

5.1.3. Dynamic effects

Although, the day-ahead market is cleared hour by hour, market participants’ offer strategies that determine the schedules

of their conventional dispatchable units are likely to condition on the recent past and forecasts of near future states of the

system because of non-convexities in the units’ production functions.23 Hence, we add 24 h of lagged system net demand

variables to the set of explanatory variables.24 This modeling choice slightly decreases the RMSE from 81,676 EUR to 80,863

23 The non-convexities include start-up and minimimum operating level costs and minimum up-time, minimum down-time, and ramping constraints.

24 The regressor matrix in this specification is defined as X =

[
XC XI

{
Lk

(∑
z

NDz

)}
k∈{1,…,24}

]
, with L being the lag operator.
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EUR as presented in Table 2, Panel B. Adding 24 h of leads of the system net demand forecast25 slightly decreases the pre-

lockdown out-of sample RMSE to 80,363 EUR. If we were to choose a model based on pre-lockdown out-of-sample performance,

we would select the model with the 24 lagged hourly variables and 24 lead hourly variables. This model also yields a larger

average predicted BAU re-dispatch costs during the lockdown. Therefore the actual average re-dispatch costs relative to the

average predicted BAU re-dispatch costs during the lockdown are lower (+11% compared to +37%). The prediction errors of both

dynamic model specifications imply Wilcoxon signed rank statistics indicating statistically significantly different distributions

of predicted BAU versus actual re-dispatch costs. Hence, the qualitative interpretation of our results remain unchanged for these

dynamic models to predict re-dispatch costs.

5.1.4. Renewables and the cost to re-dispatch

One concern with our preferred results is that our predicted re-dispatch cost increase during the lockdown may be a lower

bound on re-dispatch cost increase associated with the equivalent decrease in net demand from a larger share of intermittent

renewables. That is because the lockdown demand shock may have been more evenly distributed (over time and space) than

it would be the case if the share of intermittent renewables increased substantially. We are not able to test this hypothesis

directly because the lockdown re-dispatch cost observations resulted from a negative demand shock. However, we can analyze

how the effect of an increased share of solar and wind output would change the cost to re-dispatch the system using our BAU

prediction model.26 More precisely, we conduct three counterfactuals with different assumptions on how the increased output

of renewables will be distributed over time and space. The overall reduction of zonal net demands is the same under all three

scenarios.

We use the dynamic model presented in Section 5.1.3 with the only exception that we replace the day-ahead market price

by the daily natural gas price to account for changes in the input fuel costs. There exists an ample literature on how more

output from low variable cost renewables will depress day-ahead market prices (see e.g., Sensfu𝛽 et al., 2008; Würzburg et

al., 2013; Clò et al., 2015; Sánchez de la Nieta and Contreras, 2020) and on how more output from renewables will affect the

intra-day variance in hourly day-ahead market prices (see e.g., Wozabal et al., 2016). Hence, when manipulating the output from

renewables we cannot treat the day-ahead market price as exogenous variable any longer and therefore replace it by the daily

gas price assuming that this price is unaffected by a modified aggregate output profile of renewables. We believe that applying

a dynamic model is important in this particular setting because especially solar with its unimodal output distribution will likely

change the operation of many conventional units.

The first counter-factual analysis involves scaling the existing locational (zonal) output from wind and solar by factor two.27

The simplifying assumptions behind this scaling approach is that the frequency of binding intra-zonal transmission constraints

will not increase. Furthermore, we assume that weather patterns within a zone are comparable and that the zonal distribution

of additional renewable generation capacity will be equal to the current distribution. All other factors that define the zonal net

demands and day-ahead forecasts are unchanged.

We use our deep neural network model trained and validated on 2017 to 2019 data to predict the hourly re-dispatch costs

between 2017-01-01 and 2020-03-07 for the net demand implied by our counterfactual renewable output. Table 3 shows that

doubling the output from solar and wind generation units leads to an increase in the predicted re-dispatch cost by 37% (Table 3,

first row). This percent increase is larger than the percent increase that predicted lockdown re-dispatch costs are relative to

our counterfactual BAU lockdown period re-dispatch costs from past years (26%). One reason for this deviation may be that the

larger sample length is more informative and portrays a better overall picture. Another potential explanation is that the variable

output from renewables has greater impact on re-dispatch costs than a persistent demand shock—a hypothesis we investigate

in the next paragraphs.

The second counter-factual analysis aims to quantify the effect of intermittency and temporal variation in the output of

renewables. We therefore reduce the zonal net demands and net demand forecasts uniformly by the sample average output of

wind and solar units in each zone.28 This exercise yields a predicted increase in the re-dispatch costs of 32% (Table 3, second

row) during period 2017-01-01 and 2020-03-07.

25 The regressor matrix in this specification is defined as X =

[
XC XI

{
Lk

(∑
z

NDz

)}
k∈{1,…,24}

{
L−k

(∑
z

NDFC
z

)}
k∈{1,…,24}

]
.

26 We refer to Gianfreda et al. (2018) for a graphical analysis detailing how the increase in capacity from renewables may have increased the real-time re-

dispatch cost in Italy’s northern bidding zone comparing the years 2006–2008 (almost no renewable capacity) to the years 2013–2015. Gianfreda et al. (2016)

calculate price premia between the Italian day-ahead (intra-day) market prices and awarded quantity-weighted average real-time re-dispatch market payments

and find that renewables generally increase those. Bigerna et al. (2016) analyzes zonal Lerner indices during the period 2009 to 2013 for the main generators

in the Italian day-ahead market and conclude that the exercise of market power in the day-ahead market has been surprisingly reinforced in specific off-peak

hours as a result from increased supply from renewables.
27 Table 1, Panel B, shows several projections on the growth of wind and solar capacity in Italy and find that wind and solar capacity may already be doubled

in the next decade from now.
28 We calculate the average actual output of solar and wind for each zone and net this value from each zone’s net demand.
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Table 3

Predicted BAU re-dispatch cost doubling output from renewables.

Solar output Wind output Smoothed ΔCost [EUR/hour] Relative Change

double double – +69,845 +37%

double double time +60,140 +32%

double double time/spacea +47,380 +25%

Notes: Modeled trained and validated on 2017 to 2019 data and evaluated during the period January 1,

2017 to March 7, 2020. Average hourly re-dispatch cost during this period was 189,000 EUR. Deep neural

network model including leads and lags as described in Section 5.1.3 deployed to produce predictions.
a Distributed uniformly across the six demand zones.

Lastly, we modify the spatial distribution smoothing the additional renewables along time and space.29 This exercise yields

a predicted increase in the hourly re-dispatch cost by only 25% (Table 3, third row) for the period 2017-01-01 to 2020-03-07.

These findings emphasize the importance of the various seasonalities of renewable technologies, the importance of their

location, as well as the associated forecast errors between the day-ahead prediction and real-time output of renewables. These

estimates emphasize that increased spatial and temporal variation in renewables output as the share of renewables output in

the system increases is likely to result in additional re-dispatch cost increases.

6. Discussion and conclusion

We use the negative demand shock to the Italian electricity market as a result of the COVID-19 lockdown to study the impact

of an increase in renewable generation capacity in the Italian electricity market on re-dispatch costs. We find that the COVID-19

demand shock yields same reduction in the demand for energy from controllable generation units that a slightly more than

doubling of renewable energy production would under business-as-usual demand conditions.

Using a neural network model to provide a business as usual predictive model for re-dispatch costs, we compute coun-

terfactual re-dispatch costs for the first four months in 2020 in Italy and compare these predicted re-dispatch costs to actual

re-dispatch costs for the pre-COVID-19 lockdown and COVID-19 lockdown periods.

We find no statistical difference between the distribution of predicted hourly re-dispatch costs and actual re-dispatch costs

during the pre-COVID-19 period. For the COVID-19 period, actual re-dispatch costs are 37% higher than predicted business-as-

usual re-dispatch costs. Blowing up this increase in re-dispatch costs during the COVID-19 period to an annual value and using

the fact that the demand reduction implies a doubling of renewable energy production implies a roughly 1 billion EUR annual

increase in re-dispatch costs associated with doubling renewable output. We emphasize that this re-dispatch cost increase is

not a prediction of how these costs will scale with an increased wind and solar generation share. They are only indicative of

how much these costs could increase without system operators making the necessary investments in transmission and other

technologies to manage the lower levels of net demand that result from an increased share of intermittent renewables.

There are several reasons why a substantial increase in the share of renewables may have an even more severe effect on

re-dispatch costs in the Italian market than a negative demand shock. First, there is a difference in expected shape and location

to net demand from a reduction in gross demand versus an increase in intermittent renewables. In the case of solar, an energy-

equivalent increase would have a far more concentrated diurnal (and seasonal) shape than an energy-equivalent decrease in

gross demand, occurring across all hours. For wind, the diurnal shape may not be as concentrated, but the location may be and

its actual (locational) output is typically harder to predict. In both of these situations—the more concentrated shape and con-

centrated location—one could reasonably expect higher re-dispatch costs from the increase in renewables, as compared to the

decrease in gross demand. Second, going beyond hourly averages to hourly variances, there is likely to be a big difference in the

volatility of hourly net demand from an increase in renewables versus a decrease in gross demand due to the former’s inter-

mittency. We have shown that both effects are present in our analyses of different counterfactual renewable output increases

in Section 5.1. However, as we learned from our lockdown period analysis in Section 5 an additional re-dispatch cost increase is

likely a result of persistently lower net demands, so our estimate of the increase of re-dispatch costs is on the conservative side.

We should also note that our analysis points out the need for market power mitigation mechanisms to deal with a new

source of local market power—that due low levels of net demand. Traditional market power mitigation mechanisms focus on

high demand hours as these were the hours when little spare capacity will be left to compete with each other to serve demand.

According to this logic, low demand hours are not typically thought to be periods when suppliers can exercise unilateral mar-

ket power because there is plenty of idle generation capacity. However, commitment costs, system security constraints, or

transmission constraints are the reasons for market power potential in low demand hours. Although grid upgrades can help in

relieving system security constraints and, consequently, the opportunities to exercise local market power, these investments

can have long lead-times (ranging from a few years, in the case of devices located inside substations, to decades, in the case of

transmission lines) and in a dynamic environment it is hard to anticipate what will be needed in years to decades from now.

Therefore, dynamic on-line market power mitigation systems could be useful to mitigate high re-dispatch costs as seen during

29 We distributed the additional output from renewables uniformly across the six demand zones. Put differently, we calculate the average aggregate output of

solar and wind units and net one sixth of this value from the zonal net demands.
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the lockdown. Such systems have the capacity to properly mitigate local market power even when the power system is affected

by unexpected events.

A. Appendix

A. Data Description

We use hourly data that spans between 2017-01-01 and 2020-04-26. In Table A.1, we detail input data as well as their

sources. The dependent variable (y) is the total hourly real-time re-dispatch cost in the Italian electricity market.30 All other

market data is used to compute zonal net demands and net demand forecasts for dispatchable supply as described in Equation

(1). Our final regressor matrix contains zonal net demands, zonal net demand forecasts, an indicator variable for workdays, and

an indicator variable for winter. The latter is important, as in winter more electricity can be transported through the existing

transmission network because outside temperatures are lower.

In Table A.2, we display the mean, standard deviation (Std), minimum (Min), and maximum (Max) of each of the variables

used in our predictive modeling exercise.

Table A.1

Data Description.

Variable Unit Temporal resolution Spatial resolution Comment

Real-time re-dispatch cost1 EUR Hourly National Includes re-dispatch costs and real-time

balancing costs. Start-up costs and configuration

change costs are not included.

Day-ahead Market Price2 EUR/MWh Hourly National Relevant for demand side (PUN)3

Gas price2 EUR/MWh Daily National Average day-ahead market price at the Italian

virtual trading hub, PSV (Punto di Scambio

Virtuale)4

Market demand5 MWh Hourly Zonal7 Actual total demand minus self-consumption

that includes industrial self-consumption and

distributed solar

Market demand forecast5 MWh Hourly Zonal7 Day-ahead forecast total demand minus

self-consumption that includes industrial

self-consumption and distributed solar

Solar generation6 MWh Hourly Zonal7 Actual solar generation

Solar generation forecast6 MWh Hourly Zonal7 Day-ahead forecast solar generation

Wind generation6 MWh Hourly Zonal7 Actual wind generation

Wind generation forecast6 MWh Hourly Zonal7 Day-ahead forecast wind generation

Hydro generation6 MWh Hourly Zonal7 Actual non-controllable hydro generation

(run-of-river)

Net imports5 MWh Hourly Neighboring

countries8

Net imports to Italy from neighboring countries

Workday Indicator variable equal to one for days that are

not weekend days nor holidays

Winter Indicator variable equal to one for months

October to April

1 Data provided by Terna.
2 Data publicly available from https://www.mercatoelettrico.org.
3 We use the prezzo unico nazionale (PUN) that is effectively the demand-weighted average zonal price relevant for the demand side (see Graf and

Wolak, 2020, for more details).
4 Continuous trading market.
5 Data publicly available from https://www.terna.it/en/electric-system/transparency-report.
6 Data publicly available from https://transparency.entsoe.eu.
7 Italian bidding zones considered are North, Center-North, Center-South, South, Rossano, Sardinia, and Sicily. In 2019, Brindisi and Foggia bidding

zones were integrated into South and Priolo bidding zone was integrated into Sicily.
8 Italy is connected to Austria (North), France (North; Sardina and Center-North is connected via Corsica), Greece (South), Malta (Sicily),

Montenegro (Center-South), Slovenia (North), and Switzerland (North).

30 Real-time re-dispatch costs include real-time balancing costs and re-dispatch costs. Only the costs to change schedules from dispatchable units are included

but not the costs to start up or to change a unit’s configuration.

14

https://www.mercatoelettrico.org
https://www.terna.it/en/electric-system/transparency-report
https://transparency.entsoe.eu


C. Graf, F. Quaglia and F.A. Wolak Journal of Environmental Economics and Management 105 (2021) 102398

Table A.2

Descriptive Statistics

Variable Unit Location Count Mean Std Min Max

Real-time re-dispatch cost EUR National 29,087 197,362 132,602 −107, 147 1,328,790

Day-ahead market price EUR/MWh National 29,087 54 16 0 170

Gas Price EUR/MWh National 29,087 19 5 8 56

Net demand MWh North 29,087 9,930 3,964 561 23,633

Net demand forecast MWh North 29,087 10,189 3,973 1,129 24,036

Net demand MWh Center-North 29,087 2,970 749 545 5,433

Net demand forecast MWh Center-North 29,087 3,044 754 652 5,483

Net demand MWh Center-South 29,087 3,892 1,112 987 7,714

Net demand forecast MWh Center-South 29,087 3,992 1,116 655 7,832

Net demand MWh South 29,087 1,523 1,110 −1, 979 4,672

Net demand forecast MWh South 29,087 1,668 1,082 −2, 534 4,691

Net demand MWh Sardinia1 29,087 722 299 −559 1,532

Net demand forecast MWh Sardinia1 29,087 734 297 −606 1,598

Net demand MWh Sicily 29,087 1,520 534 −163 3,550

Net demand forecast MWh Sicily 29,087 1,565 528 −580 3,718

Net demand MWh Rossano2 29,087 −39 39 −180 0

Net demand forecast MWh Rossano2 29,087 −40 36 −167 0

Notes: The data spans the period from January 1, 2017 to April 26, 2020. It is hourly data except for the gas price which is available on a daily basis.

Missing values in the gas price time series and in any of the time series used to construct zonal net demands and zonal net demand forecasts are

linearly interpolated.
1 Net imports from Corsica are only considered in Sardinia’s net demand and net demand forecast.
2 Limited production bidding zone with no demand.

B. Research Design

In Fig. B.1, we summarize the research design. After collecting the hourly data on the variables described in Table A.1, we

separate the data in a training and validation dataset and in an out-of-sample dataset. The out-of-sample dataset contains data

from the beginning of the year 2020 until April 26, 2020 which was the day when the lockdown was eased. We divide the out-

of-sample dataset in a pre-lockdown period that lasts from January 1, 2020 until March 7, 2020 and in a lockdown period that

covers the rest of the out-of sample data. The in-sample data spans from January 1, 2017 to December 31, 2019 and we randomly

take 70% of the days in the sample as training data and the remaining 30% as validation data. We train the deep learning model

on the training data and use the validation data to avoid over-fitting of the model. Out-of-sample data is completely set-aside

data that never has been presented to the algorithm.

We use the trained weights to predict hourly out-of-sample re-dispatch costs. The prediction error of our model is calculated

using out-of-sample pre-lockdown data. In a last step, we calculate predicted BAU re-dispatch costs including a 95% prediction

band. These predicted BAU re-dispatch costs are then compared to the actual re-dispatch cost realizations during the lockdown

and observations that lie outside of the prediction band are considered to be excessive and associated with the special low-

demand period.

Fig. B.1 Research Design.

C. Deep Neural Network Configuration and Performance

We train a plain vanilla deep neural network with two hidden layers. We minimize the mean squared error (MSE) given by

T−1 ∑T
t=1 (yt − ŷt)2, where y = (y1, y2,… , yT)′ is the vector of actual total re-dispatch costs and ŷ = (̂y1, ŷ2,… , ŷT)′ the vector

of their predictions. We use Root Mean Square Propagation (RMSProp) as an optimizer that is a stochastic gradient descent

algorithm in which the learning rate is adapted for each of the parameters.

We set the maximum value of epochs to 1,500, but apply “early stopping” of the optimization routine to avoid over-fitting

(Yao et al., 2007). More precisely, we stop the routine if the accuracy in the validation set worsens for five consecutive epochs.

15



C. Graf, F. Quaglia and F.A. Wolak Journal of Environmental Economics and Management 105 (2021) 102398

Optimizing hyper-parameters applying a learning rate equal to 0.006, 48 neurons (n) in each of the two hidden layers (makes

3265 trainable parameters for our preferred model specification), and use of a rectified linear unit (ReLU) activation function.

We standardize each explanatory variable by removing the mean and scaling to unit variance. Mean and variance of the train-

ing data were applied to standardize the validation data. We account for model uncertainty by using dropout that randomly

switches off a fraction of the neurons in the neural network. This technique aims at reducing over-fitting and to improve train-

ing performance. The hyper-parameter optimization yields the optimal dropout fraction to be 0.1. The model is trained using the

libraries Tensorflow 2.1.0 and Keras 1.0.1. We use hyperband as a tuner to perform hyper-parameter optimization (Li et al., 2018).

Optimal hyper-parameters and the pre-defined set of hyper-parameters are presented in Table C.1. Note that hyper-parameters

are optimized using only training and validation data but not out-of-sample data.

The RMSE of our preferred specification of the deep neural network using out-of-sample pre-lockdown observations and

predictions yields 81,676 EUR.

Table C.1

Optimal Hyper-parameters.

Hyper-parameter Optimal value Possible values

Activation function ReLU ReLU, Tanh, Sigmoid

Learning rate 0.006161 Min: 1e-4; Max: 1e-2; “log-sampling”

Dropout 0.1 0.1, 0.2, …, 0.5

n1 48 16, 32, 48

n2 48 16, 32, 48

D. Additional Figures

Fig. D.1 compares weekly BAU re-dispatch costs averaged over all hours in a week to lockdown re-dispatch cost. BAU re-

dispatch costs calculated as the average cost for each hour of the week over March and April during the years 2017–2019.

Lockdown re-dispatch costs are calculated as the average hourly cost between 2020-03-09 and 2020-04-26.

Fig. D.2 compares hourly system BAU net demands to system net demands under lockdown.31 BAU net demands for each

hour in March and April for the years 2017–2019. Lockdown net demands for each hour between 2020-03-08 and 2020-04-26.

Boxes represent interquartile range (IQR) and upper and lower vertical bars equal to the 1 percent and 99 percent. Diamonds

represent outliers not included in the 1–99 percentile.

Fig. D.1 Hourly average Re-dispatch Cost.

31 System net demand is defined as the sum over zonal net demands. Zonal net demands are defined in Equation (1).
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Fig. D.2 Net demand shock due to Lockdown as a Response to COVID-19 Pandemic.
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