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Abstract

Small businesses are typically committed to providing a positive customer experience and therefore

may exhibit a response to dynamic electricity prices different from residential or industrial customers.

We conduct a field experiment to determine the extent to which small businesses respond through

re-configuration of typical routines throughout the experiment period versus through adjustments to

specific dynamic pricing events. Using a customer-level survey of appliance ownership, we estimate

the hourly response patterns of individual appliances to participation in the experiment versus

individual dynamic pricing events. Consistent with our re-configuration hypothesis, small businesses

primarily curtail electricity usage throughout the experiment period, although we also find a small

imprecisely estimated response to dynamic pricing events on top of the re-configuration effect.

Appliances not critical to a positive customer experience such as dish dryers, food storage units,

lights, electric motors & pumps, and industrial heaters are the major sources of the energy savings

from the re-configuration actions of these small businesses.
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“If the shop is hot, the guests simply leave, developing a bad reputation. Maintaining a
pleasant environment is important for us.”

– A barber shop owner

“It didn’t take long before I got into energy saving lifestyle. I pulled out one or two light bulbs
at my store during the campaign.”

– A keysmith store owner

“Whenever out for home visiting services, I turned off nearly all appliances not in use and
pulled their power cords. I didn’t do any of these before joining the campaign”

– A small hardware store owner

1. Introduction

There is a widespread agreement that the efficiency and reliability of the electricity supply industries

could be improved by making final demand more responsive to the hourly price of wholesale electric-

ity. Although the economic literature has extensively investigated the responsiveness of residential

electricity consumers to dynamic prices in various experimental settings, little progress has been

made to understand how small commercial consumers or, equivalently, small businesses might re-

spond to dynamic prices.1 We report on the results of a dynamic pricing experiment involving small

businesses in order to understand how their price responsiveness might be similar to and different

from that of residential consumers. We also make use of detailed customer-level appliance surveys to

unpack the hour-of-day level aggregate price responsiveness into a set of hour-of-day appliance-level

price responses.

Consistent with the above quotations from participants in our experiment, we hypothesize that

small businesses are committed to giving every customer a positive service experience through an

established set of routines and this may cause them to respond different from residential consumers

to facing dynamic prices. Responding to dynamic price signals typically only costs the household

a temporary inconvenience, but the same temporary demand response could cost a small business

both a temporary and permanent loss of customers and impose additional burdens on employees.

This difference can create a different set of incentives for the small business owners in reacting to

dynamic prices, which to our knowledge, has not been rigorously investigated.

We conjecture that the small business are likely to re-configure how they do business to be able to

reduce their demand during dynamic pricing events periods, rather reduce demand through one-off

1For experimental evidence on the impact of dynamic pricing for residential consumers see Wolak (2007), Wolak
(2010), Jessoe and Rapson (2014), Ito et al. (2018) and Burkhardt et al. (2019). For the case of industrial and large
commercial customers see Patrick and Wolak (2002).
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routine-breaking efforts during these time periods which could cause a temporary or permanent loss

of revenues and impose increased burdens on employees. The goal of our study is to investigate

the extent to which small businesses employ each of these two modes of demand response at the

appliance level using hourly customer-level consumption data and detailed inventories of customer-

level appliance holdings for our treatment and control groups.

We find that the primary mode of price-responsiveness by small businesses appears to be through

re-configuration of their use of appliances after entering the dynamic pricing program. Customers

change their use of appliances to reduce their electricity consumption during peak hours of day,

whether or not there is a dynamic price incentive to do so. Electricity usage in peak hours (1-5

pm) decreased during our experiment period by, on average, about 8% (0.1 kWh per hour). This

dynamic pricing campaign effect demand reduction consisted primarily of a non-dynamic response

by the small business of making it a regular practice to curtail usage of non-customer-service crit-

ical appliances during peak hours on all days of the business participated in the dynamic pricing

campaign.

The significantly higher price charged for electricity during peak hours on dynamic pricing event

days and the service quality constraints and employee routine constraints on the ability of small

businesses to reduce demand on dynamic pricing event days argue in favor of a campaign effect

response to participating in a dynamic pricing experiment. This perspective is supported by our

findings that the estimated mean bill savings during the entire two-month experiment period from

this campaign effect added up only to $US 3.80. However, much higher price paid by the small

businesses during the event hours on the ten event days during the campaign period returned about

the same estimated mean additional savings (or, equivalently, rebates) of $US 3.70.

To capture the ten event days’ worth of bill savings, these small businesses re-configured their

operations for all peak hours throughout the experiment period. Re-configuring their operations

throughout the entire dynamic pricing campaign allowed small businesses to capture these bill

savings during the ten events days without risking the loss in revenues from decline in service

quality or the cost of changing employee routines from a temporary reduction in energy demand.

The estimated demand reduction during all peak hours during the campaign period is a non-trivial

economic and environmental benefit from facing small business customers with dynamic prices.

The customer-level mean energy savings from the event days (8.9 kWh) is dwarfed by total energy

savings induced by the dynamic pricing campaign (32.9 kWh).

The second key finding from our experiment is that we are unable to detect any statistically mean-

ingful incremental aggregate or appliance-level consumption change from individual dynamic pricing
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events beyond the ongoing demand reduction due to the campaign effect. This outcome is consis-

tent with our difficulty-of-breaking-the-routine hypothesis for small businesses. The finding that the

firms did not undertake any further curtailment of uses of their appliances on event days is likely the

result of the high fixed, irreversible cost of setting up a new service routine for the small business

and the likelihood that a temporary demand reduction would lose the small business more revenues

than it would save on its electricity bill.

Additional evidence in favor of our difficulty-of-breaking-the-routine hypothesis is the breakdown of

the total within-day campaign effect into response patterns of individual appliances belonging to

the business. We extend the statistical procedure of estimating the baseline patterns of residential

end-use demand, referred to as conditional demand analysis by Aigner et al. (1984) and Bartels and

Fiebig (2000), allowing for weather-dependent baseline patterns of appliance use within the day and

changes in these within-day patterns of consumption during the dynamic pricing campaign period

and dynamic pricing event days. We estimate both unrestricted within day response patterns, as

well as response patterns that follow high order polynomials in the hour of the day, to address the

issue of the high dimension of our unrestricted parameter space.

Our appliance-level analysis consistently reveals that the direction, magnitude, and timing of within-

day demand responses are very different across the appliances, making a convincing case for the

re-configuration undertaken at the appliance-use level. Persistent peak hour consumption reduction

was observed only for non-service critical appliances, such dish dryers, food storage units (refrigerator

and Kimchi fridge), lights (incandescent, fluorescent, and LED), motors & pumps, and industrial

heaters, with limited shifting of these appliance uses to off-peak hours of the day.

Our findings collectively suggest that although small businesses have little flexibility manually in

responding to hourly electricity price signals, this does not mean that exposing them to dynamic

prices will not lead to a demand response. Consistent with post-experiment comments from par-

ticipants given in the Appendix A7, the opportunity to capture significant bill savings from rebate

earned during dynamic pricing events led these small businesses to undertake a re-configuration of

service routines during the entire dynamic pricing campaign. Our results also point to a critical role

for automated demand response and timely information feedback in alleviating customer discomfort

and limiting inefficiencies in business practices that can allow small business to respond to dynamic

price signals.

The remainder of the paper is organized as follows. Section 2 describes the unique challenges facing

small business customers in responding to dynamic prices and uses that as a basis for making our

difficulty-of-breaking-the-routine demand response hypothesis. Section 3 describes the design of our
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field experiment and data collection process. Section 4 develops the econometric models used to

estimate appliance-level weather-dependent within-day baseline consumption patterns, within-day

pattern of consumption responses to the dynamic pricing campaign, and within-day pattern of

consumption responses to a dynamic pricing event day. Section 5 discusses policy implications of

our experimental results, and Section 6 concludes.

2. The Economics of Small Business Demand Response

Electricity consumers can be expected to evaluate the benefit versus cost of any potential demand

response action in order to determine whether to undertake it. The benefits of such an action

are primarily the savings in the consumer’s monthly electricity bill and any additional financial

compensation granted for that action. However, small business consumers face costs that are not

relevant to residential consumers. Members of the household are typically the only individuals that

experience the financial or inconvenience cost associated with a demand response action. For small

business, many demand response actions also impose costs of both customers and employees. For

example, pre-cooling a store or restaurant to reduce air conditioning use during the hottest hours of

day, imposes costs on customers and employees both in terms of cooler than desired temperatures

early in the day and hotter than desired temperatures later in the day.

Because financial viability is typically a necessary condition for continued existence of a small

business, demand response actions with expected financial benefits greater than the expected costs

are the only ones likely to be undertaken.2 For the small businesses in our sample, the expected

bill savings from responding to a dynamic pricing event is likely to be less than the cost of taking

this action. For example, a customer in our sample consumes 5.6 kWh during a four-hour-long

peak period (our sample average consumption during this time period) would gain only $US 0.44

from a one-time estimated reduction of 0.45 kWh (8%) during the four-hour-long peak-time-rebate

dynamic pricing event (through current period bill savings and rebate payments). This level of bill

savings is unlikely compensate for the likely negative impact on the daily average $US 220 sales

revenue of the small business in our sample that reported sales revenue.

For this reason, we hypothesize that small businesses participating in a dynamic pricing experiment

take an alternative approach to profiting from their participation. These small businesses take one-

time re-configuration actions at the start of the dynamic pricing experiment that impose little, if any,

costs on customers and employees in order to capture ongoing savings from reduced consumption

2This is different from residential consumers where the desire to feel environmentally conscious may tip the scales
in favor of undertaking a demand response action.
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during all peak hours of the experiment period and the additional savings during all dynamic pricing

events that do require them to break this new routine. The roughly similar magnitude of average

bill savings from the ten dynamic pricing events as the average bill savings these small business

received for their re-configuration actions throughout the entire dynamic pricing campaign period

also explains why the small businesses did not undertake these actions before participating in the

dynamic pricing experiment.

Our experiment examines the extent to which small businesses undertake a re-configuration of

electricity usage during the entire dynamic pricing campaign, which we refer to as the campaign

effect versus respond to individual dynamic pricing events, which we call the marginal event-day

effect. We define the full event-day effect as the sum of the campaign effect and marginal event-day

effect. Our field experiment relies on a peak-time rebate (PTR) mechanism as the treatment that

provided small businesses with the economic incentive to curtail electricity consumption during

dynamic pricing events. Besides estimating a weather-dependent baseline within-day electricity

consumption pattern for each appliance category, we also estimate within-day campaign effects and

within-day marginal event-day effects for each appliance category.

A possible alternative interpretation of our campaign effect result might be that the treatment

subjects altered their electricity consumption because they were aware of being observed due to

the so-called Hawthorne effect (Monahan and Fisher, 2010). Our experiment controlled for this by

alerting both the treated and control subjects that their electricity consumption would be monitored

and used for research purposes and compensated both groups for this with an upfront financial

payment. Therefore, we believe that our campaign effect is likely to be result of the expected bill

savings from peak time rebates during dynamic price events for the treated group relative to the

control group.

Further evidence for our re-configuration hypothesis is the specific changes in appliance use that

make up our campaign effect. Because we administered an on-site survey to all small businesses in our

treatment and control groups of their ownership of an exhaustive list of appliances, this information

allows us to decompose both types of customer-level within-day demand response activities into

changes in within-day use of each appliance the customer owns. We found campaign effect peak

hour electricity consumption reductions for non-service critical appliances, such dish dryers, food

storage (refrigerator and Kimchi fridge), light (incandescent, fluorescent, and LED), motor & pump,

and industrial heater, with limited shifting of these appliance uses to off-peak hours of the day.

An appliance-level understanding of the choice and timing of demand response measures could have

a number of follow-on benefits. Energy service providers, for example, can use this information

6



to design plug-level appliance curtailment or load-shifting contracts or to predict the potential re-

configuration response of individual program participants based on their appliance holdings.

3. Research Design and Data Preparation

We partnered with the state-owned Korea Electric Power Corporation (KEPCO) to design and

implement a field experiment that introduced a peak-time rebate (PTR) program called “Smart

Save Days Campaign” to a sample of small commercial and industrial (C&I) electricity customers

in Seoul. These C&I customers were mostly small commercial outlets and service businesses located

across the city’s 25 districts. We selected the initial list of target customers from a stratified random

sample3 from approximately 20,000 small C&I customers who had hourly interval meters as part

of the nationwide advanced metering deployment plan to be achieved by 2020.4 During sample

recruitment, however, unanticipated changes were made to the original list of target subjects that

would result in systematic difference between the recruited control and treatment groups which

would keep the former from constituting an unbiased measure of baseline electricity usage for the

latter and thereby from drawing causal inference. We thus attempted to resolve this issue after the

experiment using the two approaches that produced quantitatively similar results. The problems

associated with the original sample and recruitment, as well as methodologies we employed to

address them are discussed in Appendix A1.

After obtaining on-site consent from the subjects for collecting their hourly electricity use for research

purposes, the recruiters administered tablet-assisted personal interviews on various items including,

business characteristics, operation hours, appliance holdings, and self-reported summer bills. Any

incorrect information about business characteristics previously given by KEPCO was revised then.

The treatment subjects were also given with a short on-site education on the PTR that they would

be subject to in a couple of weeks. This educational experience was assisted by the leaflets shown

in Fig. A1, which describe the duration and operation of the campaign and possible measures to

reduce peak-time electricity usage on event days. It was not until both the treatment and control

group subjects completed the on-site consent and personal interviews that they were paid the fixed

participation incentive of $US 26 and allowed to be part of the experiment.

Upon completion of the recruitment process by mid-July of 2017, the experiment started in early

3The stratified random assignment was undertaken by first assigning 29 standard business classes to one of seven
strata established based on their electricity usage in August and September of 2016, followed by random sampling of
control and treatment subject pairs from the individual strata. The procedure is explained in Appendix A1.

4As KEPCO had been responsible for sequencing the rollout of interval meters to different service sites and C&I
customers equipped with the meters continued to remain under seasonal flat tariffs like other customers, there is no
particular reason to believe that our target customers were systematically different from the entire C&I population.

7



August and finished at the end of September 2017, broadly covering the latter part of the hot

summer season in Korea. The “Smart Save Days Campaign” offered the treatment subjects a

rebate of $US 0.90 per kWh reduced during peak hours (1-5 pm) on PTR event days relative to

their counterfactual baseline.5 Because both the treatment and control groups were interviewed and

paid the fixed participation incentive of $26, and only the treatment group was allowed to earn the

rebate, the Hawthorne effect should not be relevant to our treatment effect.

Throughout the experiment period, a total of 10 event days were declared for the peak hours (1-5 pm)

for the treatment subjects. Each event notice was sent at 3 pm day before via text messages. There

were about 30 subjects that dropped out of the experiment because of inconveniences experienced

or a business relocation that was not anticipated at the time of recruitment, as well as nearly 90

subjects that later had to be excluded due to malfunction of their interval meters. In response

to the ongoing attrition, we undertook the parallel recruitment of additional 120 control subjects,

eventually securing a total of 1,517 sample subjects—902 for the treatment and 615 for the control

group.

After the experiment period, we also attempted to interview all treatment subjects on their fre-

quency and means of undertaking demand response and the self-reported frequency of checking

text messages. We conducted two sets of post-experiment interviews, each with seven individuals

from the treatment group based on their demographic profile, business type, and level of electricity

consumption. During the interviews, we asked a series of questions on the participant’s experiences

during the campaign. Selected results of the post-campaign survey and interviews are summarized

in Appendix A7.

Because of the above mentioned difference between the original sample assignment and the finally

enrolled participants, as well as the sample attrition during the experiment, we attempted improve

the integrity of randomization ex post by performing a random re-assignment from the eventually

secured 1,517 subjects now with correct business information.6 The re-assignment was done based

on the sampling frequencies used at the time of designing our experiment, with which we believe

the finally secured subjects should have been stratified. This procedure is described in detail in

Appendix A1. This procedure returned a total of 800 subjects—400 for the treatment and 400 for

the control group—which would be representative of small C&I customer population in Seoul. We

5The determination of customer’s baseline relative to which rebates were issues takes the average peak-time
electricity consumption from the four highest consumption days of the last five non-event business days.

6The two experimental groups before the re-assignment exhibited statistically significant differences at the p <0.01
level in terms of average hourly electricity consumption in the pre-campaign period. Specifically, the treatment
subjects had a 10% higher average hourly consumption than the control subjects.
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use this sample for our empirical analysis that follows. As a robustness check, we also performed a

coarsened exact matching to create statistically equivalent groups of treatment and control subjects

(Iacus et al., 2011, 2012). The details of this procedure is also explained in Appendix A1. The

appliance-level demand response effects estimated from the matched treatment-control pairs and

key insights thereof remained almost the same as those from our sample re-assignment, so that we

do not report the these results separately.

Table 1 presents descriptive statistics of pre-treatment observables and surveyed characteristics of

the two re-assigned experimental groups and their differences. A comparison across the treatment

and control groups confirms statistical balance in pre-treatment observables collected from interval

meters, such as daily, peak usage, and average off-peak usage. The sample balance in terms of

average daily usage, peak usage, and off-peak usage in the pre-experimental period is supported

even more strongly by the two-sample Kolmogorov-Smirnov test (Smirnov, 1939), which is shown

in Fig. 1. Table 1 also indicates that self-stated measures for electricity use behavior in the summer

(summer bill and set temperature), measures for the scale and pattern of business operation (floor

area, operation hours, and number of employees), and proxies for overall thermal insulation level

and motivation for energy efficiency investments (years built and store ownership) are all similar

between the two groups. The small number of estimates differences between the means in treat-

ment and control columns in Table 1 that are substantially larger than their standard error is not

inconsistent with the validity of the null hypothesis that the treatment and control groups have the

same population mean vectors.7

4. Estimation Procedure and Results

Three key features of our data need to be taken into account in order to estimate the baseline,

campaign and event day appliance-level electricity demand response to our peak-time rebate (PTR)

program. First, the model should be able to leverage both individual-level electricity consumption

data and individual-level appliance ownership information.8

Second, the model should be capable of identifying hourly PTR treatment effects for individual ap-

pliances while controlling for each appliance’s baseline weather-dependent electricity consumption.

We do not believe it is reasonable to estimate a customer’s demand response based on the assump-

7A α = 0.05 test of a valid null hypothesis rejects with 0.05 probability.
8The appliance ownership information received 100% survey compliance as it was in essential part of the survey.

However, whether or not all of the respondents correctly filled out the checklist of appliance ownership might be
called into question. For example, those who run system heaters might have claimed air conditioning (AC) ownership
because many of the system heater models have AC functionalities. Also, those who own drink showcases might have
checked the kimchi fridge category instead of fridge because the showcases were used to store kimchi.
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tion that one appliance category, such as air conditioners, shares the same sensitivity of baseline

electricity consumption to weather disturbances as the others, such as television sets. Our baseline

specification should allow for a different weather-dependent baseline within-day hourly consumption

for each appliance.

The third modeling consideration is specifying a model that is capable of recovering within-day

hourly appliance-level treatment effects separately for the campaign period and event days. Fig. 2

compares the within-day distribution of electricity usage of the treatment and control groups for

three different time frames relevant to our analysis: 71 weekdays before the campaign, 27 non-

event weekdays during the campaign, and 10 event weekdays during the campaign. It presents

the median and inter-quartile range (IQR) of hourly usage distribution for each time frame with

solid lines and shaded areas around them, respectively. Here, the campaign period is defined as

the time frame during which the treatment subjects were made aware that PTR event could be

called at anytime, which ranges from Aug. 8—the day campaign started and the first day-ahead

event alert was sent—through Sept. 27—the day after the last event and when the completion of

the campaign was announced. Fig. 2 indicates, first, that the distribution of electricity usage is

right-skewed (the shaded area above the hourly medians much larger than the shaded area below

them), which makes its log-transformation of hourly consumption a suitable specification for the

dependent variable. Second, as anticipated, the treatment and control groups are well balanced in

terms of hourly medians of electricity usage during the pre-campaign period. Once the campaign

began the treatment group seems to curtail usage in and around the hours for which PTR events

were called (1-5 pm). Interestingly, a similar curtailment response is found also on non-event days,

which supports our re-configuration interpretation.

4.1. The Main (Unrestricted) Model

We present a model to quantify appliance-level hourly treatment effects that the campaign triggers

on an ongoing basis, as well as marginal effects that dynamic price events produce. The model

specification is given by:

Yitd =

J∑
j=1

24∑
h=1

[
βbasejh + Ωtdβ

weather
jh

]
Dj
iH

h
t (1)

+

J∑
j=1

24∑
h=1

[
βcmpgnjh Dj

iH
h
t I

cmpgn
id + βeventjh Dj

iH
h
t I

event
id

]
+ γi + εitd

Ωtd weather variables matrix, consisting of columns for cooling degree hours (CDHs),

humidity, and their interactions in hour t on day d
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γi individual fixed effect for subject i

Dj
i indicator of 1 if subject i owns appliance j during the sample period, and 0 if otherwise

Hh
t indicator of 1 if hour t equals a given hour of the day, h ∈ {1, 2, · · · , 24}, and 0 if

otherwise

Icmpgnid indicator of 1 if subject i is assigned to the treatment group and consuming on day

d on which the campaign is in progress (from Aug. 8 through Sep. 27), and 0 if

otherwise

Ieventid indicator of 1 if subject i is assigned to the treatment group and consuming on day

d for which PTR event is called during the campaign, and 0 if otherwise9

Yitd logarithm of electricity usage of subject i in hour t on day d of the entire sample

period (from Jul. 1 through Sept. 27)

Besides the usual individual fixed effect, γi, which controls for time-independent heterogeneity in

consumption patterns across the sample, our model consists of two major parts. The first part rep-

resents counterfactual hourly baseline consumption for each appliance as predicted by the subject’s

ownership of appliance j in hour h, Dj
iH

h
t , as well as the appliance’s unique hourly sensitivity to

weather conditions Ωtd. This flexible baseline specification allows for different hourly impacts that

a given change in weather can bring to the employment of the individual appliances. For example,

a high temperature day would imply a higher baseline usage throughout the day of AC and other

cooling appliances. The second part of the model captures the average treatment effects at the

appliance level, which are the main subject of our analysis. To distinguish the ongoing campaign

effect from the marginal event-day effect that the dynamic price events provide, hourly appliance

ownership variable, Dj
iH

h
t , is interacted with two treatment indicators, that is, campaign treatment,

Icmpgnid , and marginal event-day treatment, Ieventid .

The coefficient of interest, βφjh, represents the individual effects of contribution type φ ∈ {base, weather, cmpgn, event}

by appliance j in hour h. In our case, this specification presents a total of 3,517 variables for about

1.2 million observations—2,717 predictors (the number of appliance × hours × contribution types)

and 800 individual fixed effects. Given the computational challenge posed by the large number of

covariates, we employ the two-step estimation algorithm utilizing the Frisch-Waugh-Lovell Theorem

of Somaini and Wolak (2016). The first step is to recover residuals from the projection of Yitd,

9The superscript ’event ’ stands for the presence of marginal treatment effect provided by PTR events on top of
the running effect of the campaign itself.
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Dj
iH

h
t , ΩmtdD

j
iH

h
t , Dj

iH
h
t I

cmpgn
id , Dj

iH
h
t I

event
id on fixed effects for every j and h:

Yitd = γi + eYitd

Dj
iH

h
t = γi + ebasejh,itd

ΩmtdD
j
iH

h
t = γi + eχjh,itd

Dj
iH

h
t I

cmpgn
id = γi + ecmpgnjh,itd

Dj
iH

h
t I

event
id = γi + eeventjh,itd

for all j, h, and m

where Ωmtd is the m-th vector element of weather variables matrix Ωtd. The second step is to

estimate the coefficients of interest based on the set of residuals computed as described above,

which is given by

êYitd =
J∑

j=1

24∑
h=1

[
βbase
jh êbasejh,itd +

∑
m

βm
jhê

m
jh,itd + βcmpgn

jh
̂ecmpgn
jh,itd + βevent

jh êevent
jh,itd

]
+ εitd. (2)

Now with much reduced computational costs, this process allows us to estimate βφjh and their

variances, var(βφjh), for every j, h, and φ. Having identified the model, we compute the change in

the average kWh amount of electricity usage of appliance j in hour h during the campaign, ∆cmpgn
jh ,

the marginal change that dynamic price events additionally introduces on event days, ∆event
jh , and

the resulting full treatment effect on event days, ∆full
jh , by

∆cmpgn
jh =

[
1− exp(−β̂cmpgnjh )

]
Ȳh

∆event
jh =

[
1− exp(−β̂eventjh )

]
Ȳh

∆full
jh =

[
1− exp(−β̂cmpgnjh − β̂eventjh )

]
Ȳh

where Ȳh is the average hourly electricity consumption of the treatment subjects in hour h during

the campaign. The confidence intervals of these treatment effects are obtained from parametric

bootstrapping with all standard errors of the coefficients clustered at the level of individual and day-

of-the-sample. Also, the weather-responsive hourly baseline electricity consumption for appliance j

in hour h is given by

Bjh = exp
(
β̂basejh +

∑
m

β̂mjhΩ̄mtd
)
.

where Ω̄mtd is the assumed hourly vector of the m-th element of weather variables matrix Ωtd.

To illustrate the importance of weather on hourly baseline consumption, we choose three sets of

weather scenarios: (i) highest hourly cooling degree hours and highest hourly humidity, (ii) mean

hourly cooling degree hours and mean hourly humidity, and (iii) lowest hourly cooling degree hours

and lowest hourly humidity all during the sample period. Fig. 3 plots hourly baseline electricity
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consumption in the three weather scenarios for each of the 19 appliances categories surveyed in the

on-site personal interviews. The names of the appliances and their abbreviations are listed in Table

3.

Several findings emerge from these results. First, some appliances exhibit much higher sensitivity

to temperature and humidity than the others, which justifies our assumption of different weather-

dependent baselines for each appliance category. Appliances for space cooling (AC and FN), lighting

(FL and LD), and copy machine (CM) are the examples. Not only the first but also the following

two services seem to be employed more intensively on hotter and more humid days because such

weather is likely to bring more customers into air-conditioned stores. By contrast, dish dryers (DD)

and motors & pumps (MP) are used less on hotter and more humid days presumably to reduce

internal heat gains from the appliances during service hours. Second, most appliances are used

more intensively in typical business hours than in the other hours, which serves our intuition. Such

appliances include AC, FN, WM, FL, LD, CM, MP, IH, and MI. Third, several appliances are used

in a relatively large proportion during non-business hours, that is, in the morning and the late

afternoon. The examples include DD, RC, and OR, which are run or loaded in preparing for or

closing daily business operations. Such behavior also makes sense because our baseline consumption

is for the summer season, in which internal heat gains from running the kitchen appliances during

daytime would cause significant discomfort. Fourth, appliances that require some warming-up lead

time with high wattage power, such as OR and MP, tend to be used more intensively in the morning,

so that the small businesses can serve their customers for the rest of the day. Fifth, interior or exterior

lighting devices, such as IN, FL, and LD, exhibit steadily increasing electricity usage from around

noon through the night.

Fig. 4 displays the hourly estimates of the appliance-level treatment effects, separately for the

campaign effect and the marginal event-day effect and their pointwise 95% confidence intervals

indicated in shaded error bands. As anticipated, the hourly coefficient estimates are less precise

during business hours than the other hours, in which the small businesses have little discretion in

the choice and use of appliances; and the estimates for event days are less precise than those for

the encompassing campaign days, in part due to the number of observations being smaller in the

former than in the latter. To put the significance of these hourly treatment effects into another

perspective, we performed simultaneous exclusion tests for the peak-hour coefficients on the null

hypothesis, βφj14 = βφj15 = βφj16 = βφj17 = 0, as well as for its off-peak hour counterparts, βφj1 = βφj2 =

· · · = βφj13 = βφj18 = · · · = βφj24 = 0, separately for the campaign effect (φ = cmpgn) and the marginal

event-day effect (φ = event). We also performed the simultaneous exclusion tests for the full event-
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day treatment effect on the hypotheses, βcmpgnj14 +βeventj14 = · · · = βcmpgnj17 +βeventj17 = 0 for peak hours

and βcmpgnj1 + βeventj1 = · · · = βcmpgnj13 + βeventj13 = βcmpgnj18 + βeventj18 = · · · = βcmpgnj24 + βeventj24 = 0 for

off-peak hours. Here we allow for a cluster-robust inference from the tests by employing the Wald

statistic, W = (Rφ
j β̂)

′
(Rφ

j V̂βR
′φ
j )−1(Rφ

j β̂), where β̂ is the consistent unrestricted estimator for the

full set of the coefficients, V̂β is their covariance matrix estimated with error terms clustered by the-

day-of-the-sample-of-the-individual, and Rφ
j is the restriction matrix assumed for the coefficients of

appliance j by contribution type φ. These statistics results are shown in Table 4.

Four key findings emerge from the appliance-level hourly demand response patterns (Fig. 4). First

of all, many of the appliances have precisely estimated campaign effect demand responses, but

none of them exhibit marginal event-day response that is statistically different from zero.10 Our

results suggest that the treatment subjects responded by undertaking a non-dynamic response in

the form of a one-time investment early on in a new set of service routines, instead a dynamic

response whenever an PTR event day was called. Such re-configuration may take various forms,

including saving previously wasted appliance uses, curtailing usage of non-service critical appliances,

and turning them on later in the day or operating in shorter periods.11 The minimal treatment

differential on event days indicates that the treatment subjects did not introduce any significant

measures besides what they had already implemented upon participating in the campaign. Although

the ongoing non-dynamic response, which is not well synchronized with peak hours (1-5 pm), is

compensated directly by bill savings, it would have reduced or even avoided the cost of paying

immediate attention to the dynamic events when the curtailment is paid at a much higher rate. In

this sense, the ongoing response made throughout the campaign can be considered as a fixed cost to

deliver a sizeable curtailment on event days to come anytime soon. This finding is also supported

by our test results in Table 4—no appliance rejects α = 0.05 test of the joint exclusion hypothesis

for the marginal event-day effects for both peak and off-peak hours.

10Largely similar aggregate results were found from a simple aggregate difference-in-difference model with the
customer fixed effects and weather dependent baselines. Specifically, the campaign effect comprises most of the
within-day curtailment with the marginal event-day effect not being statistically different from zero. The hourly
treatment effects and hypothesis testing results are shown in Appendix A3.

11Our post-experiment focused group interviews of a subset of treatment participants also support this up-front
re-configuration and continued use during the campaign. One participant with a golf shop stated “I did not check
SMS messages except the first two. I just continued to save energy during the summer, while taking such behavior for
granted. It was not until I joined the campaign before I got into the habit of pulling power cords.” One participant
running a hardware store said “The event notices were almost useless to me as I just continued to save electricity use
since I joined the campaign. Whenever out for home visiting services, I turned off nearly all appliances not in use
and pulled their power cords. I didn’t do any of these before joining the campaign.” One interviewee with a keysmith
store added “It did not take long before I got used to the energy-saving lifestyle. I did not do as such before joining
the campaign. To reduce electricity usage, for example, I pulled out one or two light bulbs at my store during the
program.” A herbal medicine shop owner stated “I recall that when I received event notices, I tended to turn on the
air conditioner a little later in the morning of the event days. Or sometimes I just left the door open turning it off
until customers entered in.”
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The second finding is that, all appliances that generate a precisely estimated campaign demand

response also produce a precisely estimated full event-day demand response as well. As shown in

Table 4, the simultaneous exclusion of the peak hour coefficients is rejected at the 10% significance

level in both the campaign and full event-day cases for all appliances except MW, WM, and TV,

and the same test of the off-peak hour coefficients is strongly rejected for all studied appliances. No

appliance category fails to reject the exclusion of both peak and off-peak hour coefficients at the 1%

significance level in the campaign or the full event-day treatment case. The robust full event-day

demand response that is very generously compensated under the dynamic pricing PTR mechanism

justifies why the non-dynamic response was undertaken during the campaign.12

Third, as far as the direction of demand response is concerned, desired (positive) peak-hour curtail-

ment is observed only for a subset of appliances used for housekeeping (DD and CP), food storage

(FS), illumination (IN, FL, LD), and machine drive and heating (MP and IH), most of which are

not critical for customer service during summer business hours (Fig. 4). It seems that the difficulty

of breaking service routines in response to PTR event notices made the businesses instead alter their

regular operation of these appliances during the campaign. This re-configuration would have been

relatively easy as the use of these appliances is a “you-schedule” service, and less prone to to lead

to customer complaints or increased employee burdens than other appliance services.

However, the re-configuration argument worked in an unanticipated direction for several appliances,

such as AC, OR, and VC, which exhibit a sharp curtailment in the morning followed by apparent

energy-intensification in and around peak hours during the campaign (Fig. 4). Note that those

appliances are mostly service-critical, delivering “customer-command” services, such as comfort,

cleanness, and appetite, which customers care about the most. It seems that the treatment subjects

attempted to limit the overall use of these appliances during the campaign without a compromise

in customer comfort. One possible way is to adjust hours of operation (e.g., opening late or closing

early) or to leave the appliances shut down in less-visited morning hours until significant customer

visits occur in later working hours, in which their operation had to ramp up quickly to the full

capacity.13

12The same test for the hourly coefficients estimated from a simple aggregate difference-in-difference model provides
similar results. See Table A1

13In this regard, the field study conducted by Herter (2009) for 78 small commercial consumers in Sacramento shows
that the small restaurants failed to precool and reduce AC service during event hours because their AC units were
undersized. Our post-experiment focus group interviews confirmed that the participants indeed made a serious effort
in limiting the use of appliances especially from morning hours during the campaign. For instance, one interviewee
running a herbal medicine shop said “I recall that when I received day-ahead event notices, I tended to turn on the air
conditioner a little later in the morning of the event days. Or sometimes I just left the door open turning the AC off
until customers entered in.” Importantly, the interviewees all agree that curtailing electricity usage during business
hours was much more difficult than doing it in the morning hours before they opened for customers. One mobile phone
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Last, significant within-day load shifting from peak to off-peak hours is hardly observed in the es-

timated campaign effects. One exception is WM, which presents a load shifting into early morning

and late-night hours. Nevertheless, the paucity of evidence for load shifting suggests that, in most

appliances, their peak-time reductions are less than offset by comparable usage increases in neigh-

boring off-peak hours or on non-event days, even though the treatment subjects had a reasonably

long time (22 hours) to undertake meaningful load shifting. Instead, in our case, peak-time cur-

tailment entails usage reductions in neighboring hours before and after peak hours, for which usage

curtailment is not supposed to be rewarded other than through usual bill savings. This preparatory

and prolonged demand response behavior is significant for DD, FS, IN, FL, LD, CP, MP, IH, and

MI, which are not critical components of customer experience in summer business hours. Limited

load shifting and the longer-run curtailment behavior under dynamic prices are also reported in the

residential setting by Jessoe and Rapson (2014), Allcott (2011), and Burkhardt et al. (2019).

Our finding of precisely estimated appliance-level campaign effects and statistically zero marginal

event-day effects is robust to a number model specifications. We also tried additional control vari-

ables, such as day-of-sample fixed effects with and without hour-of-the-day fixed effects. These

models produced essentially the same results. As another set of control variables, we also employed

the business type and day-of-the-week fixed effects to capture common weekday-specific business

operation patterns that vary with business type. A total of 15 standard business categories were

used—wholesale, retail, restaurant & bar, repair service, retail & rental, personal service, organiza-

tion, manufacturing, IT service, health service, engineering service, education service, construction,

business support, art & sports. Again, the model presented very similar coefficient estimates. Thus,

for the rest of the paper, we present results estimated from the form shown in Eq. (1).

4.2. The Polynomial Interpolation Model

While we have so far maintained the assumption that the baseline, demand and campaign and event

day demand responses of a given appliance in one hour of the day is unrestricted relative to that in

other hours of day, it is not unreasonable to expect that hourly the demand responses would occur

smoothly between hours of the day. This could also be one reason why we do not find very precisely

estimated marginal event-day effects. To reduce the number parameters we estimate and still allow

for hour-of-day treatement effects, we consider a specification that allows for polynomial parameter

shop owner said “Although my store wasn’t particularly sweltering, when visiting customers felt uncomfortable, that
was time to turn on the air conditioner.” One participant running a flour mill said “It was hard to curtail electricity
usage because customers visited almost anytime. Then I had to start the machine right away without exception.”
Another one with a BBQ restaurant said “As our restaurant is open 24 hours, we leave the air conditioners on all day
in the summer. During the campaign, however, I left one or two air conditioners turned off, and whenever customers
requested, I simply turned them on.”
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dependency between the hourly coefficients of the baseline and treatment effects for each appliance.

The approach implements the interpolated polynomial specification used to model distributed lag

between investment appropriations and expenditures in Almon (1965). In our case, coefficient βφjh

for any φ and j is set to be related across hours of the day, such that

βφjh ≡
K∑
k=1

bφjkh
k = bφj1h+ bφj2h

2 + · · ·+ bφjKh
K (3)

where K is the degree of polynomial sequence chosen to interpolate the sets of hourly coefficients.

It is straightforward to show
∑24
h=1 β

φ
jhH

h
t =

∑K
k=1 b

φ
jkt

k for all φ and j, so that our main model in

Eq. (1) boils down to

Yitd =

J∑
j=1

K∑
k=1

[
bcmpgnjk Icmpgnid + beventjk Ieventid

]
tkDj

i (4)

+

J∑
j=1

K∑
k=1

[
bbasejh + Ωtdb

weather
jh

]
tkDj

i + γi + εitd

where, thanks to reduced dimensionality of the polynomial model, weather matrix Ωtd now has

five covariate columns, allowing for appliance-level quadratic effects of changing weather—that is,

cooling degree hours, humidity, and their squares and interaction terms. As this specification

results in near singular model matrices because of high degree of correlation between the polynomial

sequence columns, we change basis in the interpolation by generating an orthogonal polynomial

sequence of degree K for each j sequence of
∑
k{tD

j
i I
cmpgn
id }k,

∑
k{tD

j
i I
event
id }k, and

∑
k{tD

j
i }k.

This process ensures that any two different polynomials in any given j sequence remain orthogonal

with each other. We applied the three-term recursion given by Kennedy and Gentle (1980) for this

process. Let us denote the orthogonalization matrix as Γφj with its elements denoted by γφj,mn where

m,n ∈ {0, ...K}. Then, the original sequence matrix, Tφj = [1; τj ; τ
2
j ; · · · ; τKj ] ∈ RNRK+1, and the

new sequence matrix, Zφj = [1; zj1; zj2; · · · ; zjK ] ∈ RNRK+1, have the relationship of Zφj = Tφj Γφj ,

where Γφj ∈ RK+1RK+1 is the upper triangular matrix defined by the recursion relationship. Then

Eq. (4) is orthogonalized to give

Yitd =

J∑
j=1

K∑
k=1

[
θcmpgnjk zcmpgnkj + θmtrtjk zeventkj

]
(5)

+

J∑
j=1

K∑
k=1

[
θbasejk zbasekj +

∑
m

θmjkΩmtdz
base
kj

]
+ γi + εitd

where θφjk is the coefficients to estimate, an element of the vector with the size of k + 1, Θφ
j ≡

{0, θφj1, θ
φ
j2, · · · , θ

φ
jK}. Note that as long as K is much less than 24, the two-step algorithm used for
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the main model may be no longer required to estimate Θφ
j , and the covariance matrix, V̂ (Θφ

j ), may

also be estimated from the direct one-step regression, instead of the above two-step approach.14

The coefficients of the original polynomial model, b̂
φ

j ≡ {b
φ
j0, b

φ
j1, · · · , b

φ
jK}, as well as its covariance

matrix, V̂ (bφj ), are recovered as follows:

b̂
φ

j = Γφj Θ̂φ
j

V̂ (bφj ) = Γφj V̂ (Θφ
j ) Γφ

′

j

The final step is to calculate the hourly coefficient estimates and their variances, β̃φjh and ṽar(βφjh),

of the campaign and marginal event-day treatment effects for all j and h, which can be computed

by

β̃φjh =

K∑
k=0

b̂φjkh
k

ṽar(βφjh) =

K∑
m=0

K∑
n=0

hm+n ĉov(bφjm, b
φ
jn).

For the rest of the paper, we present the hourly coefficients estimated from the 10th- and 5th-degree

polynomial interpolation models. Fig. 6 and Fig. 7 list the hourly demand response for the entire

set of appliances in the two cases. The overall pattern of hourly coefficients from either of the

two models is consistent with those from the unrestricted model shown in Fig. 4. Statistically

significant demand response during the campaign, desired peak-time curtailment made by a subset

of the appliances with preparatory and prolonged responses shown around the peak hours, fairly

limited load shifting, and a sharp morning curtailment followed by energy intensification for several

appliances are all observed more evidently and consistently.

Fig. 5 takes the example of dish dryers (DD) to demonstrate how the polynomial models fit these

baseline, campaign, and marginal event-day effects estimated from the main unrestricted model. The

overall pattern of the estimates from the two polynomial models is remarkably consistent with those

from the unrestricted model. It appears that the 10th-degree polynomial model is flexible enough

to allow the identification of the necessary demand response behavior at the appliance level while at

the same time providing the above-mentioned parameter-space-dimension-reduction benefits.

14We employed a commercial cloud computing service featuring the memory size of 64.4 GB along with 36 vCPUs.
Although the two-step Frisch-Waugh-Lovell process was required for the above unrestricted model, it was not required
for the polynomial interpolation model but it was used to reduce computing time. As we ran models with up to a
10th-degree polynomial dependency complemented by two additional sets of quadratic weather variables, the entire
calculation finished within a couple of hours for the two-step process but more than ten hours for the direct one-step
regression.
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We test the equality between the unrestricted model and polynomial models, using the Wald statis-

tic, W = (Rφ
j β̂ − β̃)

′
(Rφ

j V̂βR
′φ
j )−1(Rφ

j β̂ − β̃), where β̂ is the consistent estimator of the main

model’s coefficients, β̃ is the consistent estimator of the polynomial model’s coefficients, V̂β is the

cluster-robust estimator of the covariance matrix for β̂, and Rφ
j is the restriction matrix assumed for

appliance j for contribution type φ. As shown in Table 5. the higher the degree of the polynomial

model, the smaller the statistical difference in parameter estimates between the main unrestricted

model and either of the polynomial models. Compared to the case of the 5th degree polynomial

model, the 10th degree case shrinks nearly all of the Chi-square statistic for all 24 hours, peak

hours, and off-peak hours, with a greater number of tests failing to reject at the 1% significance

level. Note that, even with the 5th degree polynomial, some of the Wald equality tests for the

campaign effect fail to reject at the same significance level in peak hours, and nearly all of the tests

for the marginal event-day effect are not rejected both in peak and off-peak hours. This suggests

that the polynomial interpolation model can reasonably well represent hourly demand response that

the unrestricted model would identify, possibly enhancing understanding of appliance-level demand

response within days with much reduced computational costs.

Our modeling exercise has so far assessed the effect of the PTR program for all appliance categories

reported (j) in all hours-of-the-day (h) of all contribution types (φ). Below, we employ the dense

parameter estimates to calculate period- and individual-level demand response, providing detailed

insights into the development of a behavioral demand response program.15

5. Prediction of Demand Response

In this section, we use our estimated appliance-level hourly parameters to develop measures that

are easier to interpret and perhaps more relevant to the decision making of the stakeholders.

5.1. Period-wise Demand Response

Using the estimated hourly parameters, we construct aggregate demand response measures during

peak period (1-5 pm) and off-peak period (all other hours) in terms of the campaign effect and the

full event-day effect, the latter of which is the summation of the campaign effect and the marginal

event-day effect. The calculation of the period-wise demand response and their confidence intervals

are described in Appendix A4.

15We also performed the group lasso (Meier et al., 2008, Yuan and Lin, 2006), grouping at the appliance and
contribution level. The non-zero campaign effect results continue to hold for this modeling approach. The estimation
process and results of the group lasso are discussed in Appendix A6.
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Fig. 8 summarizes the aggregated demand response in peak and off-peak periods during campaign

days (campaign.effect) and on event days (full.eventday.effect) and their 95% confidence intervals

from the 10th degree polynomial model. The figure nicely encapsulates the above findings from

the analyses of hourly coefficients and their simultaneous exclusion tests. First of all, the treated

businesses do alter electricity demand patterns for many of the appliances they own in both peak

and off-peak periods, but they do so not only on event days but also during the experiment period,

supporting the argument that they alter daily service routines in anticipation of dynamic price

events.

Second, non-service critical appliances exhibit desired peak curtailment (DD, FS, IN, FL, LD, CP,

MP, and IH), but the others do not. The peak-time energy intensification shown in the hour-level

analysis is also evident in the period-wise analysis for service-critical appliances, such as AC, OR,

and VC. The demand increase by these appliances more than offsets any attendant early morning

conservation, resulting in net increases in electricity consumption on both event and non-event

days.

Third, except WM, which shows positive load shifting toward the off-peak period, all of the peak-

curtailing appliances entail net reductions in off-peak consumption as well. This response arises

because the load shedding of the appliances often goes beyond the peak period due to the preparatory

and prolonged response, as shown in the above hour-level analysis. We suggest that significant peak-

time curtailment and strong (positive) load shifting into the off-peak period are hard to come by from

a behavioral demand response program like this study, unless the demand response is automated or

guided by timely information feedback.

5.2. Individual-level Demand Response

Our estimates of appliance-level hourly demand response and appliance ownership information for a

small business allows us to predict of within-day hourly pattern of demand response. Fig. 9 presents

the distribution of the individuals’ demand response effects in peak and off-peak periods as predicted

from the main unrestricted model (upper panels) and those from the 10th-degree polynomial model

(lower panels).16

Fig. 9 yields two key findings. First, there is substantial heterogeneity in the demand response of the

small businesses to the PTR program. Although a large portion of the subjects delivers intended

demand response (i.e., positive curtailment) in peak hours both on campaign days (left panels)

16The distribution of the individuals’ demand response effects by business type is shown in Appendix A5, which
indicates that within-sector variance of demand response is greater than between-sector variance.
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and event days (right panels), a small but non-trivial portion ends up generating reverse demand

response (i.e., increased usage). Most of the demand increase patterns are exhibited by businesses

running several appliances in combination that exhibit the peak-time energy intensification (i.e.,

AC, VC, and OR). Note that the similarity in the level of demand response in peak and off-peak

periods does not mean that they also exhibit a similar hourly demand response. As the peak

period response is summed over the four hours (1-5 pm) while the off-peak period response over the

remaining twenty hours, the hourly demand response is much higher for the peak period than for

the off-peak period.

Second, consistent with our main findings, a large part of the demand response also involves re-

ductions in both peak and off-peak usage during the campaign. That is, the individual businesses

did alter their routine service operation during the campaign for the prospect of receiving gener-

ous rebates from dynamic pricing events but did little additional on event days. In addition, the

polynomial interpolation approach shifts to the left the mode of the distribution of the unrestricted

demand response. This shift seems to be an artifact of the restriction imposed by the polynomial

model, which gives less coefficient variability between adjacent hours than the unrestricted one,

yielding more enhanced demand response patterns for all periods. Also, such restrictions produce

a more significant separation of distribution between peak and off-peak hours than the unrestricted

case.

The validity of our individual-level prediction of demand response based on the appliance-level hourly

treatment effect modeling is demonstrated in Fig. 10. It depicts mean hourly electricity usage and

its demand response impacts all fitted by the estimated appliance-level coefficients in the three

weather scenarios.17 As shown, the higher the levels of temperature and humidity, the higher the

electricity consumption during business hours, and the higher the magnitude of demand response.

Our mean weather case indicates a reduction in peak-hour electricity usage during the campaign

period by, on average, about 8% (0.1 kWh per hour). The fitted demand response pattern seems

largely compatible with the case from the usual difference-in-difference model discussed Appendix

A3.

The capability to predict potential demand response of individual electricity consumers and its

distribution for the entire market base, as demonstrated above, is of significant importance to utility

planners and energy service providers in improving the cost-effectiveness of a behavioral demand

response program. For example, in recruiting program participants, a utility firm can have each of

17The mean usage plot is done by calculating the hourly demand responses of the individual customers in the three
different scenarios and summing them up across the entire sample.
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the applicants complete a simple checklist of appliance holdings to produce the first-order estimate

of demand response. This way, the firm can segment the market into groups based on the predicted

performance and thus price-discriminate across them by offering different dynamic incentive rates.

In case where truthful revelation of private information from the applicant side is called into question,

random auditing by utility personnel can be arranged as part of the contract between the firm and

its customers. As long as the costs of recruitment and program administration are not exorbitantly

high, the individual-level resource assessment and pricing approach would constitute the first-best

strategy for the utility firm.

6. Conclusion

This paper investigates the demand response of small business consumers to a dynamic pricing tar-

iff. Our hypothesis was that small businesses would re-configure how they do business to be able

to reduce their demand during high-priced periods, rather than to reduce demand through one-off

efforts during these time periods, which may cause a temporary or permanent loss of customers.

Using a field experiment of the dynamic pricing campaign complemented with on-site appliance sur-

veys, we determined weather-dependent within-day baseline patterns of appliance use and changes

in these within-day patterns during the dynamic pricing campaign period and on dynamic pricing

event days, without having to perform costly plug-load monitoring. We estimated both unrestricted

within-day hourly response patterns, as well as response patterns with polynomial parameter de-

pendency between hourly coefficients.

Our results demonstrate that the primary mode of response to facing a dynamic pricing tariff by

small businesses is non-dynamic, consisting of a regular practice to curtail usage of appliances

not critical to a positive customer and employee experience during all days of participation in

the campaign. In contrast, we were unable to detect a precisely estimated incremental appliance-

level consumption change from individual dynamic pricing events beyond these ongoing demand

reductions. These findings are consistent with these businesses undertaking a re-configuration of

service routines during the campaign because they have little flexibility in responding to day-to-day

price signals because of our difficulty-of-breaking-the-routine hypothesis.

The analysis consistently reveals that the direction, magnitude, and timing of demand response

are very different across the appliances in a manner that is consistent re-configuration of routines

at the appliance level. Persistent peak hour consumption is observed only for non-service critical

appliances, such as dish dryers, food storage units, lights, motors & pumps, and industrial heaters,

with significant load shifting to off-peak hours hardly observed.

22



Our study contributes to ongoing policy discussion about the demand response potential of small

commercial & industrial electricity consumers. The evidence of non-dynamic response dominating

dynamic response implies that significant peak-time curtailment is hard to come by from a dy-

namic pricing program for small businesses, although these customers do significantly reduce their

peak period consumption because they face dynamic prices. Our difficulty-of-breaking-routine re-

sult points to the critical role that automated demand response and timely information feedback

may play to alleviate customer discomfort or limiting inefficiencies in business service practices, as

a means to promote dynamic response to dynamic price signals. In addition, the appliance-level

determination of electricity demand response demonstrated in our study should be of use to en-

ergy service providers in developing individual-level marketing strategies and thereby improving the

overall cost-effectiveness of the demand response program.
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Tables and Figures

Table 1: Sample summary statistics by the control and treatment group§

Treatment Control T-C Treatment Control T-C

Daily usage† 1.405 1.518 -0.113 Art & Sports 0.015 0.018 -0.003
[kWh/h] (0.073) (0.083) ( 1.03) [pct] (0.006) (0.007) (0.28)

Peak usage† 2.171 2.203 -0.032 Biz Support 0.028 0.04 -0.013
[kWh/h] (0.098) (0.098) ( 0.23) [pct] (0.008) (0.01) (0.98)

Off-peak usage† 1.253 1.381 -0.128 Construction 0.018 0.013 0.005
[kWh/h] (0.07) (0.081) ( 1.2) [pct] (0.007) (0.006) (0.58)

Summer bill 206.932 201.978 4.955 Education Service 0.08 0.015 0.065
[103 KRW] (9.952) (10.175) ( 0.35) [pct] (0.014) (0.006) (4.37)

AC installation 0.91 0.895 0.015 Engineering Service 0.04 0.018 0.023
[pct] (0.014) (0.015) ( 0.72) [pct] (0.01) (0.007) (1.91)

Set temperature‡ 24.4 24.4 0 Health Service 0.008 0.028 -0.02
[oC] (0.126) (0.11) ( 0) [pct] (0.004) (0.008) (2.16)

Floor area 19.13 19.63 -0.5 IT Service 0.015 0.018 -0.003
[pyeong] (1.146) (1.131) ( 0.31) [pct] (0.006) (0.007) (0.28)

Operation hours 11.47 11.4 0.07 Manufacturing 0.025 0.033 -0.008
[hours] (0.149) (0.152) ( 0.33) [pct] (0.008) (0.009) (0.63)

Employees no. 2.355 2.423 -0.068 Organization 0.018 0.02 -0.003
[person] (0.115) (0.112) ( 0.42) [pct] (0.007) (0.007) (0.26)

Built before 1980 0.098 0.059 0.039 Personal Service 0.173 0.17 0.002
[pct] (0.015) (0.013) ( 1.95) [pct] (0.019) (0.019) (0.09)

Built in 1980s 0.403 0.402 0 Restaurant & Bar 0.165 0.17 -0.005
[pct] (0.025) (0.027) ( 0) [pct] (0.019) (0.019) (0.19)

Built after 1990s 0.5 0.539 -0.039 Realtor & Rental 0.068 0.098 -0.03
[pct] (0.025) (0.028) ( 1.04) [pct] (0.013) (0.015) (1.54)

Owner-run 0.07 0.079 -0.009 Repair Service 0.028 0.025 0.003
[pct] (0.013) (0.015) ( 0.47) [pct] (0.008) (0.008) (0.22)

Monthly rent 0.917 0.902 0.015 Retail 0.293 0.28 0.013
[pct] (0.014) (0.017) ( 0.71) [pct] (0.023) (0.022) (0.39)

Long-term deposit 0.013 0.019 -0.006 Wholesale 0.03 0.058 -0.028
[pct] (0.006) (0.008) ( 0.63) [pct] (0.009) (0.012) (1.91)

Note: §Standard errors reported in parenthesis; All variables except the first three metered observables are
self-reported items from the on-site survey conducted at the time of sample recruitment; †These variables are
hourly weekday averages in June and July of 2017, which are immediate two months before the start of the
experiment; and ‡The set temperature is what the respondents stated about their set temperature of AC on
typical summer weekdays.
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Table 2: Equality tests for mean hourly usage between the treatment and control groups in different
periods

Before campaign Non-event days Event days

χ2 p-value χ2 p-value χ2 p-value

Hourly usage [kWh] 23.9 0.467 24.9 0.409 23.5 0.488
Hourly usage [logkWh] 36.4 0.050 37.4 0.040 33.1 0.102

Note: Two-sample χ2 tests were performed for the vectors of 24 hourly means of electricity usage of the treatment
and control groups.
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Table 3: Names, abbreviations, and counts

Apppliance† Definition Counts

AC AC or cooling system 722
FN electric fan 713
DD dish dryer 24
RC electric rice cooker 186
MW microwave 216
OR electric oven or range 51
FS refrigerator or kimchi fridge 707

WD electric water dispenser 521
WM washing machine 106
VC vacuum cleaner 121
IN incandescent light 60
FL fluorescent light 512
LD LED light 379
CM copy machine 188
CP computer or laptop 503
TV TV set 525
MP electric motor or pump 20
IH industrial heater or electric furnace 13
MI electric heater, pad, or blanket 187

Business type Definition Counts

PSS personal service 137
RPS repair service 21
ORG various organization 15
AAS arts & sports service 13
HLS healthcare service 14
EDS education service 38
BNS business support 27
ENG engineering service 23
RAR realtor & rental service 66
ITS IT service 13
RAB restaurant & bar 34
RTL retail store 229
WSE wholesale store 35
CST construction service 12
MFG small manufacturing 23

Note: †While our on-site interviews surveyed the ownership of each of 28 appliances, we re-categorized them into a
total of 19 appliance types, according to their significance in constituting summer baseline and servicing purposes
for small C&I customers.
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Table 4: Wald tests for linear coefficient restrictions in the main model

̂βcmpgn
jh = 0 β̂event

jh = 0 ̂βcmpgn
jh + β̂event

jh = 0

peak h† off-peak h‡ peak h† off-peak h‡ peak h† off-peak h‡

AC 73.1 266.0 2.5 28.7 31.9 136.7
FN 8.4 122.0 1.1 8.3 3.4 59.3
DD 30.6 208.0 0.9 13.2 10.0 135.7
RC 10.5 230.0 1.4 8.0 6.8 126.4
MW 2.3 165.0 1.2 17.6 2.6 61.8
OR 24.9 143.0 0.9 8.8 12.4 79.2
FS 9.8 181.0 0.7 16.9 2.9 105.9

WD 19.3 126.0 1.0 15.1 14.3 70.9
WM 6.5 217.0 0.7 25.3 3.4 131.0
VC 47.4 192.0 1.9 6.0 28.8 95.6
IN 24.8 216.0 3.0 20.3 24.5 135.6
FL 15.8 174.0 2.4 20.0 9.3 86.8
LD 16.9 199.0 1.2 15.0 8.6 130.4
CM 16.4 157.0 4.2 12.8 12.1 93.8
CP 15.3 143.0 2.6 5.1 14.3 69.5
TV 6.2 162.0 0.3 11.9 3.7 73.3
MP 15.8 335.0 3.4 12.2 8.7 208.2
IH 10.3 124.0 5.2 11.6 13.9 87.4
MI 76.9 132.0 3.8 13.3 21.0 39.2

Note: Wald tests were performed based on the OLS estimator of covariance matrix clustered at the customer-day
level; †Critical values of chi-square distribution with 4 degrees of freedom at the significance level of 10%, 5%, and
1% are 7.8, 9.5, and 13.3, respectively; and ‡Critical values of chi-square distribution with 20 degrees of freedom
at the significance level of 10%, 5%, and 1% are 28.4, 31.4, and 37.6, respectively.
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Table 5: Wald tests for parameters from the main unrestricted model equal those from the polyno-
mial model of degree 10 (upper) and 5 (lower)

̂βcmpgn
jh = ˜βcmpgn

jh β̂mtrt
jh = β̃mtrt

jh

10th degree all h† peak h†† off-peak h††† all h† peak h†† off-peak h†††

AC 110.2 15.2 85.3 18.3 2.5 12.0
FN 80.8 4.2 72.5 6.0 1.0 5.3
DD 114.5 6.6 103.2 8.9 0.2 8.7
RC 179.2 9.3 156.5 8.4 1.9 6.3
MW 74.9 1.6 68.1 18.9 0.2 16.4
OR 45.6 5.8 35.2 10.0 1.2 6.9
FS 128.6 2.6 125.7 17.2 0.7 16.4

WD 84.2 8.0 68.0 15.2 0.6 12.8
WM 177.1 4.6 169.1 26.7 0.7 21.0
VC 140.2 7.6 134.7 4.1 1.7 2.3
IN 70.1 7.3 54.7 17.7 0.5 14.9
FL 92.5 3.5 80.9 14.2 1.6 12.3
LD 77.0 2.4 74.0 11.4 2.1 8.3
CM 109.6 7.3 93.4 11.5 1.8 8.6
CP 93.9 4.1 85.5 6.1 2.4 4.5
TV 91.3 33.0 54.6 12.8 1.0 10.6
MP 302.3 3.9 301.1 9.3 1.1 8.2
IH 112.6 11.6 105.0 19.7 3.6 12.0
MI 103.1 43.8 43.0 14.4 3.9 10.5

5th degree all h§ peak h§§ off-peak h§§§ all h§ peak h§§ off-peak h§§§

AC 303.0 18.8 283.9 33.1 3.5 26.8
FN 91.8 3.6 80.4 8.3 1.4 7.7
DD 218.4 19.8 210.9 14.5 0.5 14.1
RC 218.0 1.7 199.8 10.1 1.4 8.1
MW 117.7 4.6 105.4 20.8 1.2 14.9
OR 138.5 2.9 130.9 12.3 0.5 8.1
FS 166.2 8.0 145.2 15.8 0.5 14.7

WD 187.6 43.2 142.0 16.8 0.9 14.9
WM 276.3 11.7 254.2 34.5 0.3 27.2
VC 235.1 30.4 215.5 8.2 2.2 5.6
IN 184.0 8.2 152.4 19.9 1.5 17.7
FL 145.9 9.2 133.8 21.5 3.1 17.6
LD 150.7 9.3 138.2 18.1 2.0 15.9
CM 142.2 14.4 118.4 12.1 1.5 9.5
CP 130.7 16.5 126.7 6.2 1.3 4.7
TV 208.0 13.4 177.8 12.5 0.6 10.2
MP 397.7 3.0 388.2 11.9 3.6 9.4
IH 133.0 14.2 125.2 18.7 4.5 10.4
MI 154.4 51.5 88.6 17.3 3.6 14.2

Note: Wald tests were performed for the OLS estimator of covariance matrix clustered at customer-day level;
†Critical values of chi-square distribution with 14 degrees of freedom at the significance level of 10%, 5%, and 1%
are 21.1, 23.7, 29.1, respectively; ††Critical values with 6 d.o.f. for the significance level are 10.6, 12.6, and 16.8;
†††Critical values with 10 d.o.f. for the significance level are 16.0, 18.3, and 23.2; §Critical values with 19 d.o.f.
for the significance level are 27.2, 30.1, and 36.2; §§Critical values with 1 d.o.f. for the significance level are 2.7,
3.8, and 6.6; and §§§Critical values with 15 d.o.f. for the significance level are 22.3, 25.0, and 30.6.
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Fig. 1. Two-sample Kolmogorov-Smirnov tests for the treatment and control groups in average
daily usage (left), average peak usage (middle), and average off-peak usage (right) in June and July
of 2017
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Fig. 2. Distribution of hourly electricity consumption of the treatment and control groups before
the campaign (left), for non-event days during the campaign (middle), and for event days during
the campaign (right)
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Fig. 5. The baseline effect (left), the campaign effect (middle), and the marginal event-day effect
(right) of dish dryers (DD) estimated from the main unrestricted, the 10th degree, and the 5th degree
polynomial models
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Fig. 8. Appliance-level estimates of peak and off-peak period demand responses on campaign days
(campaign.treat) and full demand response on event days (full.treat) obtained from the 10th degree
polynomial model)

Note: The estimated effect is indicated by the band inside each bar, and the
estimate’s 95% confidence interval is shown by the bar’s right and left ends.
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Fig. 10. Mean hourly electricity usage without the campaign (baseline), for non-event days during
the campaign (campaign), and for event days (event days) obtained from the main unrestricted
model in the high, medium, and low temperature and humidity scenarios
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Appendix

A1. Sample Preparation and Assignment

The stratified sampling was originally conducted as follows. We first received a list of 33,000 small

C&I customers who had hourly interval meters as part of the nationwide advanced metering de-

ployment plan. These customers were assigned into one of 29 industry type clusters that KEPCO

previously defined based on their business registration characteristics. The project team chose to

group the industry type clusters for these customers into seven strata based on the mean and stan-

dard deviation of customer’s electricity consumption in August and September of 2016. The first

stratum (population frequency of 46.2%) includes small manufacturing, offices, non-store retail-

ing, warehousing, non-retail shop, educational institutes, gyms, religious organizations, auto repair

shops, electronics repair shops, and beauty salons. The second stratum (12.9%) includes bakeries,

hotels, and restaurants, the third stratum (0.9%) has convenience stores, and the fourth stratum

(2.8%) has snack bars, fast-food restaurants, sports facilities, and amusement centers. The fifth

stratum (35.2%) includes wholesale and general retail businesses, general retailers, food retailers,

refrigerated goods retailers, non-alcoholic beverage stores, nurseries and kindergartens, clinics, wel-

fare facilities, and laundries. The sixth stratum (0.5%) has internet cafes, and the seventh stratum

(1.4%) has grocery stores. Then a stratified random sample of control and treatment subject pairs

was drawn from each strata to produce a list of target subjects to be used by the recruitment

contractor.

During sample recruitment, however, there were unanticipated changes and additions to the orig-

inal list of target subjects. When our recruiters approached the target subjects, many of them

had incorrect names and business classifications, and a significant fraction of those with correct

information declined to participate in the experiment. Given the tight project schedule, the team

continued to recruit with a backup list of KEPCO small business customers. The recruitment pro-

cess was repeated from May through July of 2017 until the target number of subjects of 1,515 were

enrolled—1,000 for the treatment and 515 for the control group. The “Smart Save Days Campaign”

started in early August and finished at the end of September 2017. Throughout the campaign, a

total of 10 event days were declared for the peak hours for the treatment subjects. There were about

30 subjects that dropped out of the experiment because of inconvenience experienced or business

relocation unplanned at the time of recruitment, as well as nearly 90 subjects that later had to

be excluded due to malfunction of their interval meters. In response to the ongoing attrition, we

undertook the parallel recruitment of additional 120 control subjects, eventually securing a total of

1,517 sample subjects—902 for the treatment and 615 for the control group.
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Because of the difference between the original sample assignment and the finally enrolled partic-

ipants, as well as the sample attrition during the campaign, we attempted improve the integrity

of randomization by performing a random re-assignment from the eventually secured 1,517 sub-

jects now with correct business information and the full records of electricity consumption. The

re-assignment was done based on the stratified sampling frequencies used at the time of designing

our experiment, but with the correct business characteristics information. We attempted to use as

many observations in our sample as possible, while maintaining the original sampling frequencies

across the strata keeping an equal number of the treatment and control subjects. This procedure

sampled 372 subjects from 664 subjects belonging to the 1st stratum (frequency of 46%), 104 from

213 in the 2nd stratum (13%), 10 from 29 in the 3rd stratum (1%), 22 from 43 in the 4th stratum

(3%), 282 from 520 in the 5th stratum (35%), and 10 from 28 in the 7th stratum (1%)—the 6th

stratum was collapsed with the 3rd stratum due to small size of this strata. In total, the re-assigned

sample consisted of 800 subjects—400 for the treatment and 400 for the control group—which would

be representative of small C&I customer population in Seoul. We used this re-assigned sample for

all of the analyses presented in the paper.

As a robustness check, we also performed a coarsened exact matching (CEM) process which created

statistically equivalent groups of treatment and control subjects, in an attempt to control for the

potentially confounding influence of pre-treatment control variables as described in Iacus et al.

(2011) and Iacus et al. (2012). Variables used for coarsening encompass nearly all of the covariates

that might influence the demand response behavior of the subjects. They include observables such

as average peak hour (1-5 pm) and off-peak hour usage and average morning (10 am to 1 pm)

and evening work-hour (5-8 pm) usage on pre-experiment weekdays, as well as self-reported survey

items, such as the last summer’s electricity bill, occupied floor area, built year of the buildings, usual

hours of operation, number of employees, and dummies for being classified as small manufacturing

business and being gas-heated in the winter. To coarsen the continuous variables, we employed the

standard automated univariate histogram method for each of the variables to create eleven equally

spaced bins, except the four pre-experiment period consumption variables, for which the number of

bins decreased to six so that the size of matched subjects can be increased at a small expense of

sample balance. Then all observations were sorted into a total of 534 strata each with the identical

values for the coarsened variables and removing all observations in any stratum without at least one

treated and one control unit. This CEM procedure recovered a total of 1,012 subjects—588 for the

treatment and 424 for the control group. The appliance-level demand response effects estimated

from the matched treatment-control pairs and key insights remained almost the same as those from

our sample re-assignment described above, although the former approach produced a sample with
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a slightly lower average electricity consumption than the latter sample.
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A2. Other Details of the Field Experiment

In our experiment, the treatment subjects were given with a short on-site education on the PTR

that they would be subject to in a couple of weeks. The education was assisted by the leaflets shown

below, which covers the duration and operation of the campaign and possible measures to reduce

peak-time electricity usage on event days.

Fig. A1. KEPCO’s educational leaflets on the ”Smart Save Day” campaign

Note:
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Fig. A2. Temperature in Seoul, system hourly demand, and system marginal price cleared at KPX
during the sample period
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A3. Supplementary Analyses and Figures on Treatment Effects

In this section, we estimate the aggregate average treatment effect (ATE) using a usual difference-

in-difference specification, which is given by:

Yitd =

24∑
h=1

βcmpgnh Hh
t I

cmpgn
id +

24∑
h=1

βeventh Hh
t I

event
id (6)

+

24∑
h=1

βbaseh Hh
t + Ωβweatherh + γi + εitd

The coefficient of interest, βbaseh , βcampgnh , and βeventh , represents the baseline effect, the campaign

treatment effect, and the marginal event-day treatment effect all in hour h, respectively. Note

that this specification is very different from our main specification shown in Section 4.2., in that it

does neither consider contributions from various appliances nor account for their different weather

sensitivities.

The left panel of Figure A3 presents the estimation results.18 The right panel shows the coefficient

estimates for the campaign effect and the marginal event-day effect with their pointwise 95 %

confidence intervals. Relative to the baseline case, the very presence of the campaign indeed reduces

hourly electricity usage by, on average, about 0.1 kWh (8%) in and around the peak hours, and

the effect remains statistically significant at the 5% level or lower. The campaign treatment effect

begins in the morning, steeply increasing until noon before it tapers off and vanishes by the early

evening. However, the marginal event-day treatment effect that comes into play only on event

days seems to be not as precisely estimated, except during the hours adjacent to the event peak

hours. Relative to the campaign-only case, the treatment subjects seem to use more electricity (or,

equivalently, reduce less) for several hours before the event peak hours and use slightly less (or

reduce more) several hours after. Note that the insignificant marginal event-day effect does not at

all mean that the full event-day treatment effect is similarly small. The full event-day effect, which

is the direct summation of the campaign effect and the marginal event-day effect, remains about

the same magnitude as the campaign effect and precisely estimated as well.

18The mean usage profiles are fitted values after conditioning on all control variables except for the customer’s fixed
effects
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Table A1: Wald tests for linear coefficient restrictions in the aggregate DID model

̂βcmpgn
h = 0 β̂event

h = 0 ̂βcmpgn
h + β̂event

h = 0

All hour coefficients† 457 35.4 145
Peak hour coefficients†† 75.1 4.99 26.9

Off-peak hour coefficients††† 451 30.7 134

Note: Wald tests were performed based on the OLS estimator of covariance matrix clustered at the customer-day
level; † critical values of chi-square distribution with 24 degrees of freedom at the significance level of 10%, 5%, and
1% are 33.2, 36.4, and 43.0, respectively; †† critical values of chi-square distribution with 4 degrees of freedom at
the significance level of 10%, 5%, and 1% are 7.8, 9.5, and 13.2, respectively; and † † † critical values of chi-square
distribution with 20 degrees of freedom at the significance level of 10%, 5%, and 1% are 28.4, 31.4, and 37.6,
respectively.
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Fig. A3. Mean hourly electricity usage without the campaign (Baseline), for non-event days during
the campaign (Campaign), and for event days during the campaign (Event days) obtained from the
main unrestricted model after conditioning on all control variables other than individuals’ fixed
effects (LEFT); and average treatment effect during the campaign (Campaign Effect) and marginal
event-day treatment effect (Marginal Event Effect) (RIGHT)
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Fig. A4. The campaign treatment effects and the marginal event-day treatment effects for treat-
ment subjects who had checked 7-10 event notices (black) versus 0-6 event notices (gray)
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A4. Prediction of Period- and Individual-level Demand Response

Section 5.1 discusses period-wise demand response. The peak-time demand response of appliance

j during the campaign, the additional demand response on event days, and the full event-day

demand response are denoted by ∆cmpgn
j,P , ∆event

j,P , and ∆full
j,P , respectively, with their off-peak period

counterparts by, ∆cmpgn
j,OP , ∆event

j,OP , and ∆full
j,OP, which are calculated as follows:

∆cmpgn
j,P =

∑
h∈P

[
1− exp(−β̂cmpgnjh )

]
Ȳh

∆event
j,P =

∑
h∈P

[
1− exp(−β̂eventjh )

]
Ȳh

∆full
j,P =

∑
h∈P

[
1− exp(−β̂cmpgnjh − β̂eventjh )

]
Ȳh

∆cmpgn
j,OP =

∑
h∈OP

[
1− exp(−β̂cmpgnjh )

]
Ȳh

∆event
j,OP =

∑
h∈OP

[
1− exp(−β̂eventjh )

]
Ȳh

∆full
j,OP =

∑
h∈OP

[
1− exp(−β̂cmpgnjh − β̂eventjh )

]
Ȳh

where Ȳh is the average electricity consumption of the treatment subjects in hour h during the cam-

paign. The confidence intervals of these period-wise demand responses are obtained from parametric

bootstrapping with all standard errors of the coefficients clustered at the level of day-of-the-sample-

of-individual.

Section 5.2 predicts individual-level aggregate demand responses. The individual-level demand

responses in peak period in terms of the campaign effect, the marginal event-day effect, and the full

event-day effect are calculated, respectively, as follows:

∆cmpgn
P (i) =

∑
j∈J

∆cmpgn
j,P Dj

i

∆event
P (i) =

∑
j∈J

∆event
j,P Dj

i

∆full
P (i) =

∑
j∈J

∆full
j,P Dj

i .
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The individual-level demand responses in off-peak period are similarly given as:

∆cmpgn
OP (i) =

∑
j∈J

∆cmpgn
j,OP Dj

i

∆event
OP (i) =

∑
j∈J

∆event
j,OP Dj

i

∆full
OP (i) =

∑
j∈J

∆full
j,OP Dj

i .
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A5. Demand Response by Business Type

A more workable, perhaps politically palatable strategy than the individual-level recruitment ap-

proach discussed in Section 5.2 would be to segment the entire market based on business types and

tune-up recruitment activities based on them. To get a glimpse of how the subjects’ electricity de-

mand response and its distribution might vary across business types, we group the individual-level

predictions according to their types, which are displayed in Figure A7.

The sectoral distribution of demand response makes three points. First, seen from the median of

the distribution predicted from the unrestricted model, while demand response remains smaller in

peak period than in off-peak period for all business types during the campaign (campaign.effect),

such separation is somewhat less evident on event days (full.eventday.effect). That is, despite not

statistically significant, dynamic price events seem to provide some additional stimulus for more

peak-time curtailment and associated more load shifting into the off-peak period, at least in terms

of sectoral distribution.

Second, while all of the fifteen business types present negative median peak-time response on event

days, their between-sector variance is not considerable. More significant is within-sector hetero-

geneity, which is indicated by the box-and-whiskers spanning in both directions. Note that sectors

delivering business-to-business services, such as business support (BNS), engineering service (ENG),

construction (CST), and small manufacturing (MFG), exhibit peak-time distribution that is bunched

on the left to generate relatively robust peak-time curtailment. Except the few sectors, no other

business type ensures most of its member businesses generating such robust peak-time curtailment.

The suggestion is that utility firms may consider approaching these high-impact sectors first, rather

than the others without robust negative demand response.

The last point, which may relieve some concerns about program performance, is that the predicted

median peak-time demand response remains negative, so does the mean, during the campaign in

most business types, except sectors directly dealing with customers, such as restaurant & bar (RAB),

art & sports (AAS), education service (EDS), and organization (ORG). Therefore, “no regrets”

second-best strategy for the program administrator would be to draw on business types exhibiting

strictly negative mean peak-time demand response and to recruit their member businesses using

a stratified sampling based on accessible observables, such as monthly electricity bills and fixed

capacity payments.
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Fig. A7. Predicted distribution of the sample’s demand responses by business type in peak and
off-peak periods during the campaign (campaign.effect) and for event days (full.eventday.effect)
obtained from the main unrestricted model (left) and the 10th-degree polynomial model (right)

Note: The box-and-whisker plots display the lower quartile (the box’s left end), the median (the inside band),
and the upper quartile (right end). The ends of the whiskers indicate the lowest datum within 1.5 IQR (inter-
quartile range) of the lower quartile and the highest datum within 1.5 IQR of the upper quartile.
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A6. Group-level Sparsity Modeling

Our modeling exercise has assessed the effect of the PTR program for all appliance categories

reported (j) in all hours-of-the-day (h) of all contribution types (φ). Such dense modeling, however,

may create challenges regarding the interpretation and application of findings. Obviously, one

would prefer to identify a smaller set of statistically significant predictors that capture main signal

present in the data, facilitating the interpretation of the original model. In doing so, it would be

desirable to have all hourly coefficients within the same appliance category being either zero or

non-zero simultaneously. The intuition is that small businesses may prioritize a subset of appliances

critical for the quality of services, implementing demand response across hours of the day during

the campaign, while not paying any extra attention to the other not-worth-to respond appliances.

Therefore, any approach to identifying a smaller set of predictors should acknowledge the natural

“group” structure that the model itself might not necessarily represent. Yet, hourly coefficients for

baseline consumption, as well as weather effects, may not be permitted to drop off because they

collectively establish a benchmark to estimate the effects of demand response.

Given that our Wald-type parameter exclusion approach did not rend itself to sparser group-level

modeling that is consistent across the appliances,19 we consider an alternative shrinkage method,

presupposing that only a relatively small number of structurally grouped predictors exhibit pro-

nounced demand response effects. For the purpose of generating more sparse coefficient vectors,

the group lasso is employed (Meier et al., 2008, Yuan and Lin, 2006). With regard to the main

regression model in Eq. (2), the shrinkage method then solves

min
βφj ∈R24

1

2

N∑
i=1

{
êY −

∑
φ

∑
j

êφ
′

j βφj

}2

+ λ

J∑
j=1

‖βφj ‖2


where êφj ∈ R24 is the vector of regressors for appliance j for contribution φ, βφj is the vector of

group-level parameters to estimate with its euclidean norm denoted by ‖βφj ‖2, and λ is a penalty

parameter, an optimal level of which is to be found through the cross validation process (Tibshirani

et al., 2015). The trade-off is that as λ increases (decreases), the model becomes sparser (denser),

fitting the data less (more) closely. In our sparsity modeling, all parameters for baseline usage βj
base

and weather effects βj
m are left out of the shrinkable set of groups, as they jointly constitute the

benchmark electricity usage.

The cross-validation procedure indicates that the mean-squared prediction error is minimized with

19Recall that none of the 19 appliance categories fails to reject the simultaneous exclusion for both peak and off-peak
hours (Table 4).
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λ = 0.000148, where none of the campaign coefficient groups are dismissed but all of the marginal

event-day coefficient groups are. We instead picked the most parsimonious model within one stan-

dard error of the minimum, that is, λ = 0.000720, acknowledging that the trade-off curve itself

is estimated with error (Breiman, 2017, Hastie et al., 2009, Tibshirani et al., 2015). Our group

lasso procedure led to the dismissal of campaign coefficients for the three appliances (FN, WD,

and TV) and of marginal event-day coefficients for all appliances. The same procedure has been

applied to the 10th degree polynomial model to dismiss none of campaign coefficients but eleven

of marginal event-day coefficients (DD, RC, MW, OR, VC, FL, LD, CM, TV, IH, and MI). The

hour-level estimates for demand response obtained by applying the group lasso to the main model

and the polynomial model are displayed in Figures A10 and A11, respectively, with their baseline

effect counterparts shown in Figures A8 and A9.

First of all, we find notable similarity in the overall trends between hourly coefficients estimated

from the sparsity modeling of the main model and those from the polynomial model (Figures A10

and A11). This suggests that the two models are not very much different in capturing main sig-

nals from the data and in generating the structure of variables selection and coefficient shrinkage,

which provides another empirical support for applying the polynomial parameter dependency to our

unrestricted model. Second, with the above-mentioned coefficient groups dismissed, the procedure

introduces estimation bias for nearly all selected campaign effect variables toward zero, compared

to the denser cases (Figures 4 and 6). Such shrinkage seems most evident for AC and FN, indi-

cating that, with the sparsity assumption, the cooling devices fall short of generating strong effects

throughout the campaign, suggesting that cooling service for small businesses may not necessarily

be used as intensively during the campaign as the denser model predicts. Third, with the sparsity

assumption, the individual-level distribution of demand response on event days becomes almost

indistinguishable from the demand response during the campaign (not shown). This is due to the

variables selection procedure removing the marginal event-day effects for nearly all appliances. In

addition, the case with the sparsity assumption, compared to the case without, introduces minor

estimation bias to the campaign effect toward zero, shifting the mode of its distribution slightly to

the right while in our case fitting the data within one standard error of the minimum.

Overall, our group-level sparsity modelling exercise points to the possible role that a small set of

appliances, not all of them, can play in capturing the main signal present in the data and, as well as

the strict dominance of the campaign effect over the marginal event-day effect in nearly all appliances

covered. To compare the sparse model with the aggregate counterpart, Figure ?? plots mean hourly

electricity usage fitted by the estimated coefficients before and after the group lasso. As shown, the
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two figures present no noticeable difference in the average treatment effects both on event days and

on non-event days during the campaign. Caution has to be taken, however, in its implementation.

Admittedly, the sparsity modeling can simplify the interpretation of the denser model and allows

program developers and their customers to focus on a fewer number of demand response measures

available. The downside is that, as all marginal event-day effects are not identified and many of

campaign effects are lessened, the information cannot be taken into account in prescribing more

customized appliance-specific demand response measures or curtailment contracts.
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A7. Post-Campaign Survey Responses

Fig. A12. Post-campaign survey responses from the treatment subjects on the frequency of un-
dertaking demand response on PTR event days

Table A2: Post-campaign survey responses from the treatment subjects on demand response mea-
sures used during the campaign and their perceived performances

Measures implemented Measure of greatest
(multiple choices) perceived impact

Turning off unnecessary lights 392 71
Changing AC’s set temperature 297 176
Pulling power cords or shutting off multiple-tap 273 82
Not using AC 190 167
Using fan in lighter wind mode 173 11
Shifting usage to off-peak hours 66 10
Using fridge in lighter cooling mode 61 0
Not using fan 45 3
Using higher efficiency appliances 36 1
Reducing frequency of using appliances 32 9
Going out leaving shops empty 24 3
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Observations from the post-campaign focused group interviews, some of which also

appear in the main text, are as follows:

“It was not until I joined the program that I got into the habit of pulling power cords...I did not

check SMS messages except the first two. I just continued to save energy during the summer, while

taking such action for granted.” (A golf shop owner)

“The event notices were almost useless to me as I just continued to save electricity use since I joined

the program. Whenever I went out for home visiting services, I turned off nearly all appliances not in

use and pulled their power cords. I didn’t do any of these before joining the program.” (A hardware

store owner) “It would have been okay to me to receive the event notice on the same day as I already

became accustomed to energy conservation” (An optical store owner)

“It did not take long before I got used to energy saving lifestyle. I did not do as such before joining

the program. To reduce electricity usage, for example, I pulled out one or two light bulbs at my store

during the program.” (A keysmith store owner)

“If at least one customer asks for air conditioning, I must turn it on no matter what.” (A pan-fried

rice restaurant owner)

“Customers were very sensitive to the temperature setting of drinks fridges. They complained that

beverage was not cool enough and left without purchasing. I could not ignore such response.” (A

supermarket owner)

“It was hard to curtail electricity usage because customers visited almost anytime. Then I had to

start the machine right away without exception” (A flour mill owner)

“I recall that when I received event notices, I tended to turn on the air conditioner a little later in the

morning of the event days ... Or sometimes I just left the door open turning it off until customers

entered in.” (A herbal medicine shop owner)

“As our restaurant is open 24 hours, we leave the air conditioners on all day in the summer. During

the campaign, however, I left one or two air conditioners turned off, and when customers asked, I

simply turned them on.” (A BBQ restaurant owner)

“Although my store wasn’t particularly sweltering, when visiting customers felt uncomfortable, that

was time to turn on the air conditioner.” (A mobile phone shop owner)

“It is almost impossible to turn off the air conditioner as the customers are to sit down nearly two

hours.” (A beauty parlor owner)
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“If the shop is hot, the guests simply leave, developing a bad reputation. Maintaining pleasant

environment is important for us.” (A barber shop owner)

“The only thing I could do was to endure heat for one or two hours or raise temperature setting.

Turning off computers was not a feasible option for business like us.” (An interior design office

owner)
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